File size: 56,858 Bytes
74ae950 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 |
import os
import torch
import time
import numpy as np
import torch.distributed as dist
from copy import deepcopy
from transformers.utils import logging
from transformers import AutoTokenizer
from itertools import cycle
from typing import List
logger = logging.get_logger(__name__)
class Memory(torch.nn.Module):
def __init__(
self,
model_config,
k_seq_dim:int=2,
v_seq_dim:int=2,
):
"""Setup necessary attributes."""
super().__init__()
self.config = model_config
# initialize necessary parameters
self.k_seq_dim = k_seq_dim
self.v_seq_dim = v_seq_dim
self.rng = np.random.default_rng(42)
self._post_validation()
self.reset()
@property
def beacon_token(self):
return self.config.vocab_size
def _post_validation(self, verbose=True):
assert self.config.beacon_window >= self.config.beacon_stride, f"Make sure the beacon_window {self.config.beacon_window} >= beacon_stride {self.config.beacon_stride}!"
for ratio in self.config.beacon_ratio:
assert ratio >= 0, f"Make sure all beacon ratios are greater than or equal to 0, found {self.config.beacon_ratio}!"
assert self.config.beacon_attn in ["segmentation", "step-expansion", "full-coverage"], f"beacon_attn {self.config.beacon_attn} not implemented!"
assert self.config.beacon_ratio_mix in ["instance-random", "step-random", "sequence"] or "adapt-" in self.config.beacon_ratio_mix, f"beacon_ratio_mix {self.config.beacon_ratio_mix} not implemented!"
# assert self.config.beacon_pos in ["append", "interleave"], f"beacon_pos {self.config.beacon_pos} not implemented!"
if self.config.beacon_pos == "interleave":
assert self.config.beacon_window == self.config.beacon_stride, f"Make sure the beacon_window equals to beacon_stride when using interleaving mode."
if self.config.beacon_parallel_window > 1:
assert self.config._attn_implementation != "flash_attention_2", f"Currently parallel window does not support flash_attention_2!"
self._cpu = torch.device("cpu")
if verbose:
info = f"applying activation beacon on {self.config.beacon_param} (the beacon embedding is initialized from {'bos' if self.config.beacon_embed_init == 'bos' else 'eos'} embedding, the beacon tokens are positioned with '{self.config.beacon_pos}' method), with window size {self.config.beacon_window}, stride {self.config.beacon_stride}, {self.config.beacon_attn} attention{' (attending to previous beacons)' if self.config.beacon_attend_prev else ' (no attending to previous beacons)'}, sink size {self.config.beacon_sink_size}, compression ratio {self.config.beacon_ratio} (mixed by {self.config.beacon_ratio_mix})..."
logger.info(info)
def set(self, verbose=True, **kwargs):
"""
Set attributes out of the constructor.
"""
for k, v in kwargs.items():
setattr(self.config, k, v)
self._post_validation(verbose=verbose)
def reset(self, **kwargs):
"""Initialize attributes for a new sequence."""
# the cursor pointing to the start of the current window
self.start_idx = 0
# the cursor pointing to the end of the current window
self.end_idx = 0
# the beacon sizes of all strides
self.all_beacon_sizes = []
# the loss per batch
self.batch_loss = None
# the valid token number per batch
self.valid_token_num = None
# the step index for processing the input_ids
self.step_idx = 0
# used in set_compression_ratio
self.compression_ratio = None
# the previous inputs is a full window or not, defaults to True
self.is_full_window = True
# the number of raw activations to preserve in update_memory (only useful when beacon_stride < beacon_window)
self.raw_size_to_cache = 0
# the number of tokens in previous stride that should be compressed by the upcoming beacon
self.interleave_remainder = 0
# compression ratio for the unfinished window
self.interleave_compression_ratio = None
self.beacon_indices = None
self.all_input_ids = None
self.all_attention_mask = None
self.all_labels = None
# NOTE: will be reset in prepare()
self.beacon_skip_first = None
self.beacon_skip_last = None
# the attention sink activations
self.sink_activations = [(None, None) for _ in range(self.config.num_hidden_layers)]
# the beacon activations
self.beacon_activations = [(None, None) for _ in range(self.config.num_hidden_layers)]
# the raw activations of recent tokens
self.raw_activations = [(None, None) for _ in range(self.config.num_hidden_layers)]
# NOTE: in case we want to resume the memory from a particular state
for k, v in kwargs.items():
# NOTE: deepcopy to untie the memory state and the model memory
setattr(self, deepcopy(k), deepcopy(v))
def export(self):
"""Export all necessary attributes of the memory module."""
return {
"start_idx": self.start_idx,
"end_idx": self.end_idx,
"all_beacon_sizes": self.all_beacon_sizes,
"batch_loss": self.batch_loss,
"valid_token_num": self.valid_token_num,
"step_idx": self.step_idx,
"compression_ratio": self.compression_ratio,
"is_full_window": self.is_full_window,
"raw_size_to_cache": self.raw_size_to_cache,
"interleave_remainder": self.interleave_remainder,
"interleave_compression_ratio": self.interleave_compression_ratio,
"beacon_indices": self.beacon_indices,
"all_input_ids": self.all_input_ids,
"all_attention_mask": self.all_attention_mask,
"all_labels": self.all_labels,
"beacon_skip_first": self.beacon_skip_first,
"beacon_skip_last": self.beacon_skip_last,
# NOTE: deepcopy to untie the memory state and the model memory
"sink_activations": deepcopy(self.sink_activations),
"beacon_activations": deepcopy(self.beacon_activations),
"raw_activations": deepcopy(self.raw_activations),
}
@property
def all_sequence_length(self):
if self.all_input_ids is None:
return 0
else:
return self.all_input_ids.shape[1]
@property
def batch_size(self):
if self.all_input_ids is None:
return 0
else:
return self.all_input_ids.shape[0]
@property
def finish(self):
is_finish = self.end_idx == self.all_sequence_length
return is_finish
@property
def dtype(self):
return self.config.torch_dtype
@property
def min_value(self):
return torch.finfo(self.dtype).min
@property
def max_position_embeddings(self):
max_position_embeddings = self.config.max_position_embeddings
if getattr(self.config, "rope_scaling", None) is not None:
scaling_factor = self.config.rope_scaling["factor"]
max_position_embeddings = max_position_embeddings * scaling_factor
return max_position_embeddings
@property
def beacon_window(self):
if (
self.beacon_skip_last is not None
and self.start_idx < self.beacon_skip_last
and self.start_idx + self.config.beacon_window > self.beacon_skip_last
):
return self.beacon_skip_last - self.start_idx
else:
return self.config.beacon_window
@property
def beacon_stride(self):
if (
self.beacon_skip_last is not None
and self.start_idx < self.beacon_skip_last
and self.start_idx + self.config.beacon_window > self.beacon_skip_last
):
return self.beacon_skip_last - self.start_idx
else:
return self.config.beacon_stride
def get_memory_size(self):
"""
Sink memory size, beacon memory size and raw memory size.
"""
sink_memory_size = 0
beacon_memory_size = 0
raw_memory_size = 0
if self.sink_activations[0][0] is not None:
sink_memory_size += self.sink_activations[0][0].shape[self.k_seq_dim]
if self.beacon_activations[0][0] is not None:
beacon_memory_size += self.beacon_activations[0][0].shape[self.k_seq_dim]
if self.raw_activations[0][0] is not None:
raw_memory_size += self.raw_activations[0][0].shape[self.k_seq_dim]
return sink_memory_size, beacon_memory_size, raw_memory_size
def prepare(self, input_ids, attention_mask, labels, skip_first=None, skip_last=None):
"""
Prepare inputs for the model. These inputs belong to the same sequence.
"""
# assert input_ids.shape[0] == 1, "Make sure the batch size is 1!"
# assert attention_mask is None or (attention_mask == 1).all(), "Make sure there is no padding!"
self._device = input_ids.device
# accumulate input_ids
if self.all_input_ids is None:
self.all_input_ids = input_ids.cpu()
else:
self.all_input_ids = torch.cat([self.all_input_ids, input_ids.cpu()], dim=1)
# accumulate attention_mask
if attention_mask is None:
attention_mask = torch.ones_like(input_ids, device=torch.device("cpu"))
if self.all_attention_mask is None:
self.all_attention_mask = attention_mask.cpu()
else:
self.all_attention_mask = torch.cat([self.all_attention_mask, attention_mask.cpu()], dim=1)
# accumulate labels if exisits
if labels is not None:
# rotate labels in advance so that the loss of the last token is not ignored in every window
labels = torch.cat([labels[:, 1:].cpu(), torch.tensor([-100]).expand(labels.shape[0], 1)], dim=1)
if self.all_labels is None:
self.all_labels = labels.cpu()
else:
self.all_labels = torch.cat([self.all_labels, labels], dim=1)
assert self.all_input_ids.shape[1] == self.all_labels.shape[1], f"Found inconsistent all_input_ids {self.all_input_ids.shape} and all_labels {self.all_labels.shape}!"
# how many tokens to skip at the beginning of the sequence? (They will be packed in a single chunk and processed by the model, after which their activations will be cached in sink_activations.)
if skip_first is not None:
assert self.config.beacon_parallel_window == 1, f"Make sure the parallel window is set to 1 when using beacon_skip!"
assert self.config.beacon_window == self.config.beacon_stride, f"Make sure the beacon_window equals to beacon_stride when using beacon_skip."
assert self.config.beacon_sink_size == 0, f"Make sure the beacon_sink_size is set to 0 when using beacon_skip!"
# stop compression after how many tokens
if skip_last is not None:
skip_first = skip_first if skip_first is not None else 0
# assert (skip_last - skip_first) % self.config.beacon_window == 0, f"skip_last ({skip_last}) - skip_first ({skip_first}) = {skip_last - skip_first} is not divisible by window size {self.config.beacon_window}"
assert self.config.beacon_sink_size == 0, "Make sure the beacon_sink_size is zero when using skip_last!"
self.beacon_skip_first = skip_first
self.beacon_skip_last = skip_last
def set_compression_ratio(self, start_idx, end_idx):
"""Choose a condensing ratio from self.config.beacon_ratio"""
def filter_ratio(ratios, stride):
valid_ratios = []
for ratio in ratios:
# stride must be bigger than condensing ratio because we there must be at least one beacon
if stride < ratio:
continue
# the stride must be evenly divisible by condensing ratio
if ratio > 0 and (stride % ratio) != 0:
continue
# when training, ratio=0 is valid if previous windows contain beacon or later windows contain beacon
if ratio == 0 and self.training:
previous_has_zero = -1 in self.all_beacon_sizes
following_has_nonzero = (start_idx + stride + self.beacon_window) <= self.all_sequence_length
if previous_has_zero or (not following_has_nonzero):
continue
valid_ratios.append(ratio)
assert len(valid_ratios), f"Cannot find valid condensing ratio (among {ratios}) for stride {stride}!"
return valid_ratios
def get_max_length(ratios):
max_lengths = []
for compression_ratio in ratios:
if compression_ratio > 0:
# NOTE: here we must use the scaled position embeddings
max_lengths.append((self.max_position_embeddings - self.beacon_window) * compression_ratio + self.beacon_window)
else:
max_lengths.append(self.max_position_embeddings)
return max_lengths
if len(self.config.beacon_ratio) == 1:
return self.config.beacon_ratio[0]
ratio_mix = self.config.beacon_ratio_mix
beacon_ratio = filter_ratio(self.config.beacon_ratio, self.beacon_stride)
if ratio_mix == "instance-random":
if self.compression_ratio is None:
beacon_ratio = self.rng.choice(beacon_ratio).tolist()
self.compression_ratio = beacon_ratio
else:
beacon_ratio = self.compression_ratio
elif ratio_mix == "step-random":
beacon_ratio = self.rng.choice(beacon_ratio).tolist()
elif ratio_mix == "sequence":
if self.compression_ratio is None:
self.compression_ratio = cycle(beacon_ratio)
beacon_ratio = next(self.compression_ratio)
elif "adapt" in ratio_mix:
if self.compression_ratio is None:
future_length = int(ratio_mix.split("-")[1])
sequence_length = self.all_input_ids.shape[1] + future_length
max_lengths = get_max_length(beacon_ratio)
# ascendingly sort the max lengths
valid_max_lengths_and_indices = [x for x in enumerate(max_lengths) if x[1] >= sequence_length]
if len(valid_max_lengths_and_indices):
minimum_length_index = min(valid_max_lengths_and_indices, key=lambda x: x[1])[0]
# use the minimal possible length for this sequence (the smallest fold ratio)
beacon_ratio = beacon_ratio[minimum_length_index]
else:
beacon_ratio = max(beacon_ratio)
# logger.warning(f"Failed to find valid fold window and size for sequence length {sequence_length}, as the maximum theoretical length is {max(max_lengths)}. Fall back to use the maximum one: {beacon_ratio}.")
self.compression_ratio = beacon_ratio
else:
beacon_ratio = self.compression_ratio
return beacon_ratio
def step(self):
# parallel does not support stride < window
# parallel does not support non-compression
# the input_ids is not long enough for parallel
if (
self.config.beacon_parallel_window > 1
and self.config.beacon_stride == self.config.beacon_window
and 0 not in self.config.beacon_ratio
and self.all_input_ids[:, self.end_idx:].shape[1] >= self.config.beacon_parallel_window * self.config.beacon_window
):
input_ids_list = []
attention_mask_list = []
position_ids_list = []
labels_list = []
beacon_size_list = []
beacon_indices_list = []
for i in range(self.config.beacon_parallel_window):
if i == 0:
_input_ids, _attention_mask, _position_ids, _past_key_values, _labels = self._step()
else:
_input_ids, _attention_mask, _position_ids, _past_key_values, _labels = self._step(ignore_memory=True)
input_ids_list.append(_input_ids)
attention_mask_list.append(_attention_mask)
position_ids_list.append(_position_ids)
labels_list.append(_labels)
beacon_size_list.append(_past_key_values[0][2])
beacon_indices_list.append(_past_key_values[0][3])
if i == 0:
past_key_values = _past_key_values
if past_key_values[0][0] is None:
mem_size = 0
else:
mem_size = past_key_values[0][0].shape[self.k_seq_dim]
else:
# no memory
assert _past_key_values[0][0] is None
batch_size = self.all_input_ids.shape[0]
# NOTE: we do not need to repliace beacon tokens for the last window
seq_len = sum(x.shape[1] for x in input_ids_list) + sum(beacon_size_list) - beacon_size_list[-1]
input_ids = _input_ids.new_zeros((batch_size, seq_len)) + self.beacon_token
# all 0
attention_mask = _attention_mask.new_zeros((batch_size, 1, seq_len, mem_size + seq_len)) + self.min_value
position_ids = torch.arange(mem_size + seq_len, device=self._device).expand(batch_size, mem_size + seq_len)
# 2 indicates the beacon token is used for replication
beacon_indices = beacon_indices_list[0].new_zeros(seq_len) + 2
if _labels is not None:
# -100 because no loss on beacon tokens
labels = _labels.new_zeros((batch_size, seq_len)) - 100
else:
labels = None
start_idx = 0
position_offset = mem_size
for i in range(self.config.beacon_parallel_window):
beacon_size = beacon_size_list[i]
# populate input_ids
_input_ids = input_ids_list[i]
cur_seq_len = _input_ids.shape[1]
input_ids[:, start_idx: start_idx + cur_seq_len] = _input_ids
# populate attention_mask and position_ids
_attention_mask = attention_mask_list[i]
_position_ids = position_ids_list[i]
# the attention mask in the first window contains the mask for memory, which is redundant here
if i == 0:
_attention_mask = _attention_mask[:, :, :, mem_size:]
_position_ids = _position_ids[:, mem_size:] - mem_size
attention_mask[:, :, start_idx: start_idx + cur_seq_len, mem_size + start_idx: mem_size + start_idx + cur_seq_len] = _attention_mask
position_ids[:, mem_size + start_idx: mem_size + start_idx + cur_seq_len] = _position_ids + position_offset
# populate beacon_indices
_beacon_indices = beacon_indices_list[i]
beacon_indices[start_idx: start_idx + cur_seq_len] = _beacon_indices
# populate labels
if labels is not None:
# populate labels
_labels = labels_list[i]
labels[:, start_idx: start_idx + cur_seq_len] = _labels
# NOTE: when there is sink activations, we need to bias the position_ids for the first window
if i == 0 and self.config.beacon_sink_size > 0 and self.sink_activations[0][0] is None:
position_offset += 1
# modify the attention and position for replicated beacon tokens
if i != self.config.beacon_parallel_window - 1:
replicate_beacon_row_start = start_idx + cur_seq_len
replicate_beacon_col_start = mem_size + start_idx + cur_seq_len
# NOTE: any attention mask is okay for replicated beacon tokens, but for convenience we use the causal mask
attention_mask[:, :, replicate_beacon_row_start: replicate_beacon_row_start + beacon_size, replicate_beacon_col_start: replicate_beacon_col_start + beacon_size] = _attention_mask.new_full((beacon_size, beacon_size), self.min_value).triu(1)
# NOTE: all future tokens can attend to the replicated beacon tokens
attention_mask[:, :, replicate_beacon_row_start + beacon_size:, replicate_beacon_col_start: replicate_beacon_col_start + beacon_size] = 0
# NOTE: the position of replicated beacon tokens start from 0
position_ids[:, mem_size + start_idx + cur_seq_len: mem_size + start_idx + cur_seq_len + beacon_size] = torch.arange(position_offset, position_offset + beacon_size, device=_input_ids.device)[None:]
start_idx += cur_seq_len + beacon_size
position_offset += beacon_size
# the memory is visible to all subsequent tokens
attention_mask[:, :, :, :max(mem_size, self.config.beacon_sink_size)] = 0
# NOTE: modify beacon_indices
for i, (key, value, _, _) in enumerate(past_key_values):
past_key_values[i] = (key, value, sum(beacon_size_list), beacon_indices)
# NOTE: update _beacon_indices so that the next-token logits can be properly sliced out in self.output()
self.beacon_indices = beacon_indices
return input_ids, attention_mask, position_ids, past_key_values, labels
else:
return self._step()
def _step(self, ignore_memory=False):
"""
Yield inputs for the current sliding window, including the input_ids, attention_mask, position_ids, and past_key_values.
"""
#============================================#
# Check whether the inputs fulfills a window.
#============================================#
# the starting position of the current window w.r.t. the start of the current input sequence
start_idx = self.start_idx
# the end position of the current window w.r.t. the start of the current input sequence
end_idx = start_idx + self.beacon_window
# indicates if the current window is completely filled by raw activations and new tokens
# we only append beacon tokens for full windows
if end_idx > self.all_sequence_length:
# the input is shorter than the initial window size
end_idx = self.all_sequence_length
is_full_window = False
else:
is_full_window = True
# NOTE: in training, the entire sequence is input to the model at once
# In the last window, we do not need to append beacons because they will not be used at all
if self.training and end_idx == self.all_sequence_length:
next_start_idx = start_idx
is_full_window = False
raw_size_to_cache = -1
beacon_size = 0
compression_ratio = -1
# NOTE: we do not compress the beacon_skip_first tokens at the beginning of the sequence
elif self.step_idx == 0 and self.beacon_skip_first is not None:
end_idx = start_idx + self.beacon_skip_first
assert end_idx <= self.all_sequence_length
next_start_idx = end_idx
is_full_window = True
raw_size_to_cache = -1
beacon_size = 0
compression_ratio = -1
# NOTE: we do not compress tokens after beacon_skip_last tokens
elif self.beacon_skip_last is not None and start_idx >= self.beacon_skip_last:
end_idx = min(start_idx + self.beacon_window, self.all_sequence_length)
next_start_idx = end_idx
is_full_window = False
raw_size_to_cache = -1
beacon_size = 0
compression_ratio = -1
else:
#============================================#
# Set compression ratio
#============================================#
if self.config.beacon_pos == "append":
if is_full_window:
# determine compression ratio for the current window
beacon_stride = self.beacon_stride
compression_ratio = self.set_compression_ratio(start_idx=start_idx, end_idx=end_idx)
if compression_ratio > 0:
# the stride must be evenly divisible by compression_ratio
beacon_size = beacon_stride // compression_ratio
else:
# the raw activations are used as beacon activations
beacon_size = -1
# forward start_idx and end_idx
next_start_idx = start_idx + beacon_stride
# how many raw activations to save
raw_size_to_cache = end_idx - next_start_idx
else:
# no stride because the sequence has finished
next_start_idx = start_idx
# cache all raw activations
raw_size_to_cache = -1
beacon_size = 0
compression_ratio = 0
elif self.config.beacon_pos == "interleave":
# the number of raw tokens in the input_ids
input_size = end_idx - self.end_idx
# set compression ratio once the previous window has finished, otherwise, reuse the interleave_compression_ratio if the input belongs to an unfinished window
if self.is_full_window:
compression_ratio = self.set_compression_ratio(start_idx=start_idx, end_idx=end_idx)
self.interleave_compression_ratio = compression_ratio
else:
compression_ratio = self.interleave_compression_ratio
# the beacon size is non-zero even if the window is not full
if compression_ratio > 0:
# this number of beacon tokens will be inserted among the raw tokens
beacon_size = (input_size + self.interleave_remainder) // compression_ratio
else:
# the raw activations are used as beacon activations
beacon_size = -1
if is_full_window:
# move forward one window
next_start_idx = start_idx + self.beacon_stride
# no save raw activations
raw_size_to_cache = 0
else:
# no stride because the sequence has not finished
next_start_idx = start_idx
# cache all recent raw activations to be used in the next window
raw_size_to_cache = -1
#============================================#
# Slice out input_ids (raw tokens in the current window)
#============================================#
input_ids = self.all_input_ids[:, self.end_idx: end_idx].to(self._device)
attention_mask = self.all_attention_mask[:, self.end_idx: end_idx].to(self._device)
if self.all_labels is not None:
labels = self.all_labels[:, self.end_idx: end_idx].to(self._device)
else:
labels = None
batch_size = input_ids.shape[0]
#============================================#
# Insert beacon tokens if necessary.
#============================================#
# t1 = time.time()
if self.config.beacon_pos == "append":
# append beacons if necessary
if is_full_window and beacon_size > 0:
input_ids = torch.cat([input_ids, input_ids.new_full((batch_size, beacon_size), self.beacon_token)], dim=1)
# NOTE: prepend 1 to attention_mask because we have past_key_values
attention_mask = torch.cat([attention_mask, attention_mask.new_ones(batch_size, beacon_size)], dim=1)
if labels is not None:
labels = torch.cat([labels, labels.new_zeros(batch_size, beacon_size) - 100], dim=1)
elif self.config.beacon_pos == "interleave":
input_len = input_ids.shape[1]
if beacon_size > 0:
# insert beacon tokens in between raw tokens
input_ids_with_beacons = input_ids.new_full((input_ids.shape[0], input_len + beacon_size), self.beacon_token)
raw_token_indices = torch.arange(input_ids_with_beacons.shape[1], device=input_ids.device)
interleave_start_idx = compression_ratio - self.interleave_remainder
raw_token_indices = raw_token_indices[raw_token_indices % (compression_ratio + 1) != interleave_start_idx].unsqueeze(0).expand_as(input_ids)
input_ids_with_beacons = input_ids_with_beacons.scatter(dim=1, index=raw_token_indices, src=input_ids)
input_ids = input_ids_with_beacons
# attention mask
attention_mask_with_beacons = attention_mask.new_full((attention_mask.shape[0], attention_mask.shape[1] + beacon_size), 1)
attention_mask_with_beacons = attention_mask_with_beacons.scatter(dim=1, index=raw_token_indices, src=attention_mask)
attention_mask = attention_mask_with_beacons
# labels
if labels is not None:
labels_with_beacons = labels.new_full((labels.shape[0], labels.shape[1] + beacon_size), -100)
labels_with_beacons = labels_with_beacons.scatter(dim=1, index=raw_token_indices, src=labels)
labels = labels_with_beacons
if compression_ratio > 0:
# update the reminder
self.interleave_remainder = (input_len + self.interleave_remainder) % compression_ratio
# NOTE: skip computing loss in the very first window because the beacon tokens will be used in the next window
if self.training and self.step_idx == 0 and not (self.config.beacon_pos == 'interleave' and self.config.beacon_attn == 'full-coverage'):
labels[:] = -100
# t2 = time.time()
#============================================#
# Prepare beacon_indices for interleave beacon_pos, a boolean mask where True indicates the beacon tokens.
# The mask is applied on the inputs of the entire window, including the cached activations and the input_ids.
#============================================#
beacon_indices = (input_ids[0] == self.beacon_token).long()
if self.is_full_window:
self.beacon_indices = torch.tensor([], dtype=torch.long, device=input_ids.device)
# the beacon_indices always tracks the beacon tokens in both the cached activations and the input_ids
beacon_indices = torch.cat([self.beacon_indices, beacon_indices])
# record the beacon_indices for the next window
self.beacon_indices = beacon_indices
if is_full_window and beacon_size == -1:
# NOTE: the first beacon_stride raw tokens serve as beacon tokens
# we use -1 to indicate these raw tokens, so that the attention mask and position ids will not be modified
beacon_indices[:self.beacon_stride] = -1
# t3 = time.time()
#============================================#
# Prepare past_key_values.
# beacon_size: how many beacon tokens are there in the input_ids
# beacon_indices: the boolean mask for the entire window where True indicates the beacon tokens (for append, the beacon_indices corresponds to input_ids, while for 'interleave', the beacon_indices corresponds to the entire window including both the input_ids and the cached activations)
#============================================#
past_key_values = []
for layer_idx in range(self.config.num_hidden_layers):
if ignore_memory:
key, value = None, None
else:
sink_key, sink_value = self.sink_activations[layer_idx]
beacon_key, beacon_value = self.beacon_activations[layer_idx]
raw_key, raw_value = self.raw_activations[layer_idx]
key = cat_tensor([
sink_key, beacon_key, raw_key,
], dim=self.k_seq_dim)
value = cat_tensor([
sink_value, beacon_value, raw_value,
], dim=self.v_seq_dim)
layer_past_key_values = (key, value, beacon_size, beacon_indices)
past_key_values.append(layer_past_key_values)
# t4 = time.time()
#============================================#
# Prepare attention_mask and position_ids.
#============================================#
first_key = past_key_values[0][0]
mem_size = first_key.shape[self.k_seq_dim] if first_key is not None else 0
if mem_size > 0:
attention_mask = torch.cat([attention_mask.new_ones(batch_size, mem_size), attention_mask], dim=1)
input_length = input_ids.shape[1]
position_ids = torch.arange(attention_mask.shape[-1], dtype=torch.long, device=self._device).repeat(batch_size, 1)
if self.config._attn_implementation == "flash_attention_2":
assert self.config.beacon_attn == "full-coverage", f"Make sure to set beacon_attn='full-coverage' when using flash attention! Found {self.config.beacon_attn}."
if 0 in attention_mask:
pass
else:
attention_mask = None
elif self.config._attn_implementation == "sdpa" and self.config.beacon_pos == "append" and beacon_size <= 0 and (input_length == 1 or mem_size == 0):
attention_mask = None
else:
attention_mask, position_ids = self._make_4d_attention_mask_and_position_ids(
attention_mask,
position_ids,
mem_size,
beacon_size,
compression_ratio,
)
# t5 = time.time()
# print(f"prepare inputs {t2-t1}, prepare indices {t3-t2}, prepare memory {t4-t3}, prepare attention mask {t5-t4}")
#============================================#
# Update necessary attributes.
#============================================#
# keep track of whether the current inputs is a full_window
self.is_full_window = is_full_window
# keep track of the raw_size_to_cache
self.raw_size_to_cache = raw_size_to_cache
# involked in self.output()
self.all_beacon_sizes.append(beacon_size)
# update start_idx and end_idx
# NOTE: the update of start_idx will influence self.beacon_window and self.beacon_stride in case self.beacon_skip_last is not None
# Therefore, we must make sure all calls to self.beacon_window and self.beacon_stride happen before the update of start_idx
self.start_idx = next_start_idx
self.end_idx = end_idx
self.step_idx += 1
# print(f"start_idx: {start_idx}")
# print(f"next_start_idx: {next_start_idx}")
# print(f"beacon_size: {beacon_size}")
# print(f"raw_size_to_cache: {raw_size_to_cache}")
# print(f"interleave_remainder:{self.interleave_remainder}")
# print(f"input_ids: {input_ids}")
# print(f"input_len: {input_len}")
# print(f"beacon_indices: {beacon_indices}")
# print(f"position_ids: {position_ids}")
# print(f"attention_mask:\n{attention_mask == 0}")
# x = input()
# if x == "s":
# return
return input_ids, attention_mask, position_ids, past_key_values, labels
def update_memory(self, past_key_values):
"""
Accumulate beacon activations and raw activations.
"""
for layer_idx, (key, value, beacon_size, beacon_indices) in enumerate(past_key_values):
# NOTE: the past_key_values are incrementally returned (only the new keys and values are returned)
previous_raw_key, previous_raw_value = self.raw_activations[layer_idx]
if self.beacon_skip_first is not None and self.sink_activations[layer_idx][0] is None:
assert key.shape[self.k_seq_dim] == self.beacon_skip_first
assert value.shape[self.k_seq_dim] == self.beacon_skip_first
self.sink_activations[layer_idx] = [
key,
value,
]
# NOTE: no need to update raw activations and beacon activations as all activations are kept as sink activations
continue
if self.beacon_activations[layer_idx][0] is None and self.config.beacon_sink_size > 0:
# save the sink activations
# NOTE: we do not slice the key/value activations, which may cause duplication when beacon_ratio=-1 for the first window, but it's okay
self.sink_activations[layer_idx] = [
slice_tensor(key, end=self.config.beacon_sink_size, dim=self.k_seq_dim),
slice_tensor(value, end=self.config.beacon_sink_size, dim=self.v_seq_dim),
]
if not self.is_full_window:
# this means the current input does not fulfill a window
# thus, the key and value are all raw activations, and we accumulate them until the window is fulfilled
assert self.raw_size_to_cache == -1
raw_key = cat_tensor([
previous_raw_key,
key
], dim=self.k_seq_dim)
raw_value = cat_tensor([
previous_raw_value,
value
], dim=self.v_seq_dim)
self.raw_activations[layer_idx] = (raw_key, raw_value)
else:
# NOTE: use the correct previous_beacon_key and value!
previous_beacon_key, previous_beacon_value = self.beacon_activations[layer_idx]
beacon_key, beacon_value, raw_key, raw_value = self._extract_beacon_and_raw_memory(
key,
value,
previous_beacon_key,
previous_beacon_value,
previous_raw_key,
previous_raw_value,
beacon_indices,
)
self.beacon_activations[layer_idx] = (beacon_key, beacon_value)
self.raw_activations[layer_idx] = (raw_key, raw_value)
def update_loss(self, batch_loss, valid_token_num):
"""
Accumulate loss for later perplexity computation and backward pass.
"""
if self.batch_loss is None:
# NOTE: multiply valid_token_num because batch_loss is divided by it in advance
self.batch_loss = batch_loss * valid_token_num
self.valid_token_num = valid_token_num
else:
# NOTE: avoid in-place operations, otherwise there will be gradient errors in training
self.batch_loss = self.batch_loss + batch_loss * valid_token_num
self.valid_token_num = self.valid_token_num + valid_token_num
def output(self, model_outputs):
"""
Override loss with accumulated loss. Update the next-token logits.
"""
# override loss
if self.batch_loss is not None:
# here the batch_loss is the summation of all token losses in each element
loss = self.batch_loss.sum() / self.valid_token_num.sum()
# NOTE: prevent nan
batch_loss = self.batch_loss / self.valid_token_num
if (self.valid_token_num == 0).any():
batch_loss = batch_loss.masked_fill(self.valid_token_num == 0, 0.)
# NOTE: we must use dict to override values, otherwise trainer cannot find loss
model_outputs["loss"] = loss
model_outputs["batch_loss"] = batch_loss
# override last_hidden_states (used in generation)
beacon_size = self.all_beacon_sizes[-1]
# remove logits corresponding to beacon tokens
if beacon_size > 0:
logits = model_outputs["logits"]
beacon_indices = self.beacon_indices[-logits.shape[1]:]
model_outputs["logits"] = logits[:, beacon_indices == 0]
return model_outputs
def _make_4d_attention_mask_and_position_ids(
self,
attention_mask,
position_ids,
mem_size,
beacon_size,
compression_ratio,
):
"""
Convert attention_mask into causal 4D attention_mask (batch_size, head_num, query_len, key_len).
"""
tgt_size = attention_mask.size(-1) - mem_size
dtype = self.dtype
min_value = self.min_value
device = self._device
batch_size, src_size = attention_mask.size()
# square for memory, and lower triangular for input_ids
causal_mask = torch.full((tgt_size, tgt_size), min_value, device=device, dtype=dtype)
mask_cond = torch.arange(causal_mask.size(-1), device=device)
causal_mask.masked_fill_(mask_cond < (mask_cond + 1).view(causal_mask.size(-1), -1), 0)
causal_mask = torch.cat([torch.zeros(tgt_size, mem_size, dtype=dtype, device=device), causal_mask], dim=-1)
causal_mask = causal_mask[None, None, ...].expand(batch_size, 1, tgt_size, src_size)
# 1 for non-padding tokens
expand_mask = attention_mask[:, None, None, :].expand(batch_size, 1, tgt_size, src_size)
invert_mask = 1.0 - expand_mask
invert_mask.masked_fill_(invert_mask.bool(), min_value)
attention_mask = causal_mask.masked_fill(invert_mask.bool(), min_value)
if self.config.beacon_attn == "step-expansion":
# each beacon can attend to one more sub-interval than its predecessor
if self.config.beacon_pos == "append" and beacon_size > 0:
window_size = self.beacon_window
window_size_with_beacon = window_size + beacon_size
beacon_start_idx = -beacon_size
# batch_size, head_num, window_size
reference_attention_mask = attention_mask[..., -beacon_size - 1, -window_size_with_beacon: -beacon_size]
# compression_ratio, 2 * compression_ratio, ..., beacon_size * compression_ratio
beacon_arange = torch.arange(1, beacon_size + 1, device=device) * compression_ratio
# 0, 1, 2, ..., window_size - 1
ordinal_arange = torch.arange(window_size, device=device)
# beacon_size, window_size
valid_pos = ordinal_arange.expand(beacon_size, window_size) < beacon_arange.unsqueeze(-1)
# beacon_size, window_size
ordinal_attention_mask = torch.where(valid_pos, 0, min_value)
# NOTE: add reference attention_mask so that padding tokens are considered
ordinal_attention_mask = ordinal_attention_mask[None, None, ...] + reference_attention_mask.unsqueeze(-2)
if self.config.beacon_attend_prev:
beacon_attention_mask = attention_mask.new_full((beacon_size, beacon_size), min_value).triu(1)
# the beacon token is next to the last ordinal token it attends to
ordinal_position_ids = position_ids[:, -window_size_with_beacon: -beacon_size]
beacon_position_ids = ordinal_position_ids[:, compression_ratio - 1::compression_ratio] + torch.arange(1, beacon_size + 1, device=device)[None]
position_ids[:, beacon_start_idx:] = beacon_position_ids
else:
beacon_attention_mask = attention_mask.new_full((beacon_size, beacon_size), min_value).fill_diagonal_(0)
# the beacon token is next to the last ordinal token it attends to
ordinal_position_ids = position_ids[:, -window_size_with_beacon: -beacon_size]
beacon_position_ids = ordinal_position_ids[:, compression_ratio - 1::compression_ratio] + 1
position_ids[:, beacon_start_idx:] = beacon_position_ids
attention_mask[..., beacon_start_idx:, -window_size_with_beacon: -beacon_size] = ordinal_attention_mask
attention_mask[..., beacon_start_idx:, beacon_start_idx:] = beacon_attention_mask
# NOTE: the attention mask should be modified when there is beacon token within the window, not in the input_ids
elif self.config.beacon_pos == "interleave" and (self.beacon_indices == 1).any():
assert self.config.beacon_attend_prev == False, f"Make sure beacon_attend_prev is False if using 'interleave' beacon pos!"
beacon_indices = self.beacon_indices
cur_position_ids = position_ids[:, -len(beacon_indices):]
base_position = cur_position_ids[:, 0] - 1
# NOTE: alternate position so that the position of raw tokens are consistent
position_template = cur_position_ids.new_ones(cur_position_ids.shape)
position_template[:, compression_ratio + 1::compression_ratio + 1] = 0
cur_position_ids = base_position + position_template.cumsum(-1)
position_ids[:, -len(beacon_indices):] = cur_position_ids
cur_input_length = len(beacon_indices)
cur_attention_mask = attention_mask[..., -cur_input_length:, -cur_input_length:]
# mask all beacon columns
cur_attention_mask[..., beacon_indices] = min_value
# beacon tokens can attend to themselves
input_ids_attention_mask = cur_attention_mask[..., -tgt_size:, -tgt_size:]
input_ids_attention_mask[..., range(tgt_size), range(tgt_size)] = 0
elif self.config.beacon_attn == "segmentation":
# each beacon can attend to its corresponding sub-interval
if self.config.beacon_pos == "append" and beacon_size > 0:
window_size = self.beacon_window
window_size_with_beacon = window_size + beacon_size
beacon_start_idx = -beacon_size
# batch_size, head_num, window_size
reference_attention_mask = attention_mask[..., -beacon_size - 1, -window_size_with_beacon: -beacon_size]
# beacon_size, compression_ratio
indices = torch.arange(compression_ratio * beacon_size, device=device).view(beacon_size, -1)
# beacon_size, window_size
ordinal_attention_mask = attention_mask.new_full((beacon_size, window_size), min_value)
ordinal_attention_mask.scatter_(dim=-1, index=indices, value=0)
# NOTE: add reference attention_mask so that padding tokens are considered
ordinal_attention_mask = ordinal_attention_mask[None, None, ...] + reference_attention_mask.unsqueeze(-2)
if self.config.beacon_attend_prev:
beacon_attention_mask = attention_mask.new_full((beacon_size, beacon_size), min_value).triu(1)
# the beacon token is next to the last ordinal token it attends to
beacon_position_ids = position_ids.new_full(beacon_size, fill_value=compression_ratio + mem_size)
beacon_position_ids = beacon_position_ids + torch.arange(beacon_size)
position_ids[:, beacon_start_idx:] = beacon_position_ids
else:
beacon_attention_mask = attention_mask.new_full((beacon_size, beacon_size), min_value).fill_diagonal_(0)
# the beacon token is next to the last ordinal token it attends to
beacon_position_ids = position_ids.new_full(beacon_size, fill_value=compression_ratio + mem_size)
position_ids[:, beacon_start_idx:] = beacon_position_ids
attention_mask[..., beacon_start_idx:, -window_size_with_beacon: -beacon_size] = ordinal_attention_mask
attention_mask[..., beacon_start_idx:, beacon_start_idx:] = beacon_attention_mask
# beacons of different ratios are blind to others
attention_mask[..., beacon_start_idx:, -beacon_size: beacon_start_idx] = min_value
elif self.config.beacon_pos == "interleave":
raise NotImplementedError
elif self.config.beacon_attn == "full-coverage":
pass
return attention_mask, position_ids
def _extract_beacon_and_raw_memory(
self,
key,
value,
previous_beacon_key,
previous_beacon_value,
previous_raw_key,
previous_raw_value,
beacon_indices,
):
"""Extract beacon and raw memory from the returned key and value when the window is full."""
key = cat_tensor([
previous_raw_key,
key
], dim=self.k_seq_dim)
value = cat_tensor([
previous_raw_value,
value
], dim=self.v_seq_dim)
# NOTE: we use magic slice instead of boolean index here for efficiency
beacon_key = slice_tensor(key, index=torch.logical_or(beacon_indices == 1, beacon_indices == -1), dim=self.k_seq_dim)
beacon_value = slice_tensor(value, index=torch.logical_or(beacon_indices == 1, beacon_indices == -1), dim=self.v_seq_dim)
if self.config.beacon_accum:
beacon_key = cat_tensor([previous_beacon_key, beacon_key], dim=self.k_seq_dim)
beacon_value = cat_tensor([previous_beacon_value, beacon_value], dim=self.v_seq_dim)
if self.raw_size_to_cache > 0:
raw_key = slice_tensor(key, index=beacon_indices == 0, dim=self.k_seq_dim)
raw_key = slice_tensor(raw_key, start=-raw_size_to_cache, dim=self.k_seq_dim)
raw_value = slice_tensor(value, index=beacon_indices == 0, dim=self.v_seq_dim)
raw_value = slice_tensor(raw_value, start=-raw_size_to_cache, dim=self.v_seq_dim)
else:
raw_key = None
raw_value = None
return beacon_key, beacon_value, raw_key, raw_value
def slice_tensor(x, start=None, end=None, step=None, index=None, dim=2):
if x is None:
return None
if end == 0:
return None
if start == x.shape[dim]:
return None
if start is not None and start == end:
return None
if dim == 2:
if index is not None:
return x[:, :, index]
elif start is None and end is not None:
if step is None:
return x[:, :, :end, ...]
else:
return x[:, :, :end:step, ...]
elif start is not None and end is None:
if step is None:
return x[:, :, start:, ...]
else:
return x[:, :, start::step, ...]
elif start is not None and end is not None:
if step is None:
return x[:, :, start:end, ...]
else:
return x[:, :, start:end:step, ...]
elif dim == 1:
if index is not None:
return x[:, :, index]
elif start is None and end is not None:
if step is None:
return x[:, :end, ...]
else:
return x[:, :end:step, ...]
elif start is not None and end is None:
if step is None:
return x[:, start:, ...]
else:
return x[:, start::step, ...]
elif start is not None and end is not None:
if step is None:
return x[:, start:end, ...]
else:
return x[:, start:end:step, ...]
else:
raise NotImplementedError
def cat_tensor(list_of_tensors, dim=-1):
list_of_tensors = [t for t in list_of_tensors if t is not None]
if len(list_of_tensors) > 1:
result = torch.cat(list_of_tensors, dim=dim)
elif len(list_of_tensors) == 1:
result = list_of_tensors[0]
else:
result = None
return result
def slice_activations(activations, start=None, end=None, k_seq_dim=2, v_seq_dim=2):
new_activations = []
for key, value in activations:
new_key = slice_tensor(key, start=start, end=end, dim=k_seq_dim)
new_value = slice_tensor(value, start=start, end=end, dim=v_seq_dim)
new_activations.append([new_key, new_value])
return new_activations
def cat_activations(list_of_activations, k_seq_dim=2, v_seq_dim=2):
assert all(len(x) == len(list_of_activations[0]) for x in list_of_activations), f"Make sure all activations have the same number of layers! Found {[len(x) for x in list_of_activations]}."
new_activations = []
for layer_idx in range(len(list_of_activations[0])):
keys = [x[layer_idx][0] for x in list_of_activations]
values = [x[layer_idx][1] for x in list_of_activations]
new_key = cat_tensor(keys, dim=k_seq_dim)
new_value = cat_tensor(values, dim=v_seq_dim)
new_activations.append([new_key, new_value])
return new_activations
def interleave_activations(main_activations, augment_activations, main_spans, augment_spans, k_seq_dim=2, v_seq_dim=2, device=torch.device("cuda")):
""" Interleave main_activations and augment_activations according to main_span and augment_span.
Args:
main_span: a list of tuples (start_idx, end_idx). when start_idx and end_idx is None, the augment_activations will be plugged in.
augment_span: a list of tuples (start_idx, end_idx)
"""
assert len(main_activations) == len(augment_activations) , f"Make sure main and augment activations have the same number of layers! Found {len(main_activations)} and {len(augment_activations)}!"
assert sum(x[0] is None and x[1] is None for x in main_spans) == len(augment_spans), f"Make sure the number of slots for augmentation (start_idx=None and end_idx=None in main_spans) matches the number of augmentations. Found {sum(x for x in main_spans if x[0] is None and x[1] is None)} slots but {len(augment_spans)} augmentations!"
new_activations = []
for layer_idx in range(len(main_activations)):
main_key, main_value = main_activations[layer_idx]
augment_key, augment_value = augment_activations[layer_idx]
sliced_keys = []
sliced_values = []
augment_idx = 0
for start, end in main_spans:
if start is None and end is None:
# this means the augment key/value should be plugged in
augment_start, augment_end = augment_spans[augment_idx]
sliced_key = slice_tensor(
augment_key,
start=augment_start,
end=augment_end,
dim=k_seq_dim
).to(device)
sliced_value = slice_tensor(
augment_value,
start=augment_start,
end=augment_end,
dim=v_seq_dim
).to(device)
else:
sliced_key = slice_tensor(
main_key,
start=start,
end=end,
dim=k_seq_dim
)
sliced_value = slice_tensor(
main_value,
start=start,
end=end,
dim=v_seq_dim
)
sliced_keys.append(sliced_key)
sliced_values.append(sliced_value)
new_key = cat_tensor(sliced_keys, dim=k_seq_dim)
new_value = cat_tensor(sliced_values, dim=v_seq_dim)
new_activations.append([new_key, new_value])
return new_activations
def softmax(x:np.ndarray, axis=-1, temperature=1):
if isinstance(x, list):
x = np.array(x)
x = x / temperature
x = x - x.max(axis=axis, keepdims=True)
y = np.exp(x)
return y / y.sum(axis=axis, keepdims=True)
def l1_norm(x):
sum_x = sum(x)
x = [y/sum_x for y in x]
return x |