Tomoya1999 commited on
Commit
6b2b3fc
·
verified ·
1 Parent(s): 4030761

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +87 -194
README.md CHANGED
@@ -1,202 +1,95 @@
1
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2
  base_model: llm-jp/llm-jp-3-13b
3
- library_name: peft
4
  ---
5
 
6
- # Model Card for Model ID
7
-
8
- <!-- Provide a quick summary of what the model is/does. -->
9
-
10
 
 
11
 
12
  ## Model Details
13
 
14
- ### Model Description
15
-
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
-
19
-
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
-
28
- ### Model Sources [optional]
29
-
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
-
36
- ## Uses
37
-
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Contact
198
-
199
- [More Information Needed]
200
- ### Framework versions
201
-
202
- - PEFT 0.13.2
 
1
  ---
2
+ language:
3
+ - ja
4
+ tags:
5
+ - japanese
6
+ - llm-jp
7
+ - instruction-tuning
8
+ - text-generation
9
+ - unsloth
10
+ license: other
11
+ datasets:
12
+ - ichikara-instruction
13
+ model-index:
14
+ - name: llm-jp-3-13b-finetune-2
15
+ results: []
16
  base_model: llm-jp/llm-jp-3-13b
 
17
  ---
18
 
19
+ # llm-jp-3-13b-finetune-2
 
 
 
20
 
21
+ This is a fine-tuned version of [llm-jp/llm-jp-3-13b](https://huggingface.co/llm-jp/llm-jp-3-13b) using the [ichikara-instruction dataset](https://liat-aip.sakura.ne.jp/wp/llmのための日本語インストラクションデータ作成/llmのための日本語インストラクションデータ-公開/).
22
 
23
  ## Model Details
24
 
25
+ - **Base Model**: llm-jp/llm-jp-3-13b
26
+ - **Training Type**: Instruction Fine-tuning
27
+ - **Training Method**: QLoRA (4-bit quantization)
28
+ - **Library Used**: unsloth
29
+
30
+ ### Training Configuration
31
+
32
+ - **Max Sequence Length**: 512
33
+ - **LoRA Configuration**:
34
+ - Rank: 32
35
+ - Alpha: 32
36
+ - Dropout: 0.05
37
+ - Target Modules: q_proj, k_proj, v_proj, o_proj, gate_proj, up_proj, down_proj
38
+
39
+ ### Training Hyperparameters
40
+
41
+ - Batch Size: 2 per device
42
+ - Gradient Accumulation Steps: 4
43
+ - Learning Rate: 2e-4
44
+ - Number of Epochs: 1
45
+ - Warmup Steps: 10
46
+ - Mixed Precision: BF16 (if supported) / FP16 (if BF16 not supported)
47
+
48
+ ## Training Data
49
+
50
+ The model was fine-tuned on the ichikara-instruction dataset, which is a high-quality Japanese instruction dataset created by Satoshi Sekine et al. The dataset was presented at the 30th Annual Conference of the Japanese Association for Natural Language Processing (2024).
51
+
52
+ ### Input Format
53
+
54
+ ```
55
+ ### 指示
56
+ {instruction}
57
+ ### 回答
58
+ {response}
59
+ ```
60
+
61
+ ## Usage
62
+
63
+ ```python
64
+ from transformers import AutoModelForCausalLM, AutoTokenizer
65
+
66
+ model_id = "your-username/llm-jp-3-13b-finetune-2"
67
+ tokenizer = AutoTokenizer.from_pretrained(model_id)
68
+ model = AutoModelForCausalLM.from_pretrained(
69
+ model_id,
70
+ device_map="auto",
71
+ trust_remote_code=True
72
+ )
73
+
74
+ # Example usage
75
+ instruction = "ここに指示を入力してください"
76
+ prompt = f"### 指示\n{instruction}\n### 回答\n"
77
+ inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
78
+ outputs = model.generate(
79
+ **inputs,
80
+ max_new_tokens=512,
81
+ temperature=0.7,
82
+ do_sample=True
83
+ )
84
+ response = tokenizer.decode(outputs[0], skip_special_tokens=True)
85
+ print(response)
86
+ ```
87
+
88
+ ## References
89
+
90
+ - Original Model: [llm-jp/llm-jp-3-13b](https://huggingface.co/llm-jp/llm-jp-3-13b)
91
+ - Training Dataset: Sekine, S., Ando, M., Goto, M., Suzuki, K., Kawahara, D., Inui, K., & Inui, K. (2024). ichikara-instruction: Building Japanese Instruction Data for LLMs. In Proceedings of the 30th Annual Conference of the Japanese Association for Natural Language Processing.
92
+
93
+ ## License
94
+
95
+ Please refer to the license of the original model and the training dataset.