Safetensors
qwen2
shenwzh3 commited on
Commit
47e619a
Β·
verified Β·
1 Parent(s): 3ee23a4

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +0 -42
README.md CHANGED
@@ -28,11 +28,6 @@ _**Weizhou Shen, Chenliang Li, Fanqi Wan, Shengyi Liao, Shaopeng Lai, Bo Zhang,
28
 
29
  _Tongyi Lab, Alibaba Group_
30
 
31
- <p align="center">
32
- <img src="./assets/performance.png" width="100%"> <br>
33
- </p>
34
-
35
-
36
 
37
 
38
  </div>
@@ -42,9 +37,6 @@ _Tongyi Lab, Alibaba Group_
42
  In this work, we present QwenLong-CPRS, a novel framework designed to optimize long-context processing through query-aware multi-granularity compression, outperforming RAG and sparse attention methods. Distinct from RAG's coarse chunk-level retrieval, it achieves precise information extraction via token-level content selection, enhancing accuracy. Unlike sparse attention (SA) requiring model retraining, it functions as a plug-and-play module compatible with any downstream LLMs while eliminating retraining demands. This dual advantage enables both fine-grained context optimization and seamless integration across architectures.
43
 
44
 
45
- <p align="center">
46
- <img src="./assets/concept.png" width="100%"> <br>
47
- </p>
48
 
49
  We implement QwenLong-CPRS with four key innovations:
50
  * _**Controllable Context Optimization**_: Processes control prompts + queries to generate compact, task-specific context segments without retraining.
@@ -58,11 +50,6 @@ We implement QwenLong-CPRS with four key innovations:
58
 
59
 
60
 
61
-
62
- <p align="center">
63
- <img src="./assets/framework.png" width="100%"> <br>
64
- </p>
65
-
66
  ## πŸŽ‰ News
67
 
68
  - **May 26, 2025:** πŸ”₯ We release [πŸ€— QwenLong-CPRS-7B](https://huggingface.co/Tongyi-Zhiwen/QwenLong-CPRS-7B), a 7B context compression model designed for explicit long-context optimization.
@@ -75,28 +62,6 @@ We implement QwenLong-CPRS with four key innovations:
75
 
76
 
77
 
78
-
79
- ## 🎯 Model Results
80
-
81
- Here are the evaluation results.
82
-
83
- <p align="center">
84
- <img src="./assets/main_res.png" width="100%"> <br>
85
- </p>
86
-
87
- <p align="center">
88
- <img src="./assets/niah.png" width="100%"> <br>
89
- </p>
90
-
91
- <p align="center">
92
- <img src="./assets/different_llm.png" width="100%"> <br>
93
- </p>
94
-
95
-
96
- <p align="center">
97
- <img src="./assets/latency.png" width="100%"> <br>
98
- </p>
99
-
100
  ## πŸ› οΈ Requirements
101
 
102
  ```bash
@@ -166,13 +131,6 @@ python infer.py \
166
  ```
167
 
168
 
169
- ## 🌐 Join the Community
170
- Chinese users can scan QR codes to join DingTalk/WeChat groups.
171
-
172
- | WeChat | DingTalk |
173
- |----------|---------|
174
- | ![Alt Text](./assets/wechat_group.JPG) | ![Alt Text](./assets/dingding_group.png) |
175
-
176
  ## πŸ“ Citation
177
 
178
  If you find this work is relevant with your research or applications, please feel free to cite our work!
 
28
 
29
  _Tongyi Lab, Alibaba Group_
30
 
 
 
 
 
 
31
 
32
 
33
  </div>
 
37
  In this work, we present QwenLong-CPRS, a novel framework designed to optimize long-context processing through query-aware multi-granularity compression, outperforming RAG and sparse attention methods. Distinct from RAG's coarse chunk-level retrieval, it achieves precise information extraction via token-level content selection, enhancing accuracy. Unlike sparse attention (SA) requiring model retraining, it functions as a plug-and-play module compatible with any downstream LLMs while eliminating retraining demands. This dual advantage enables both fine-grained context optimization and seamless integration across architectures.
38
 
39
 
 
 
 
40
 
41
  We implement QwenLong-CPRS with four key innovations:
42
  * _**Controllable Context Optimization**_: Processes control prompts + queries to generate compact, task-specific context segments without retraining.
 
50
 
51
 
52
 
 
 
 
 
 
53
  ## πŸŽ‰ News
54
 
55
  - **May 26, 2025:** πŸ”₯ We release [πŸ€— QwenLong-CPRS-7B](https://huggingface.co/Tongyi-Zhiwen/QwenLong-CPRS-7B), a 7B context compression model designed for explicit long-context optimization.
 
62
 
63
 
64
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
65
  ## πŸ› οΈ Requirements
66
 
67
  ```bash
 
131
  ```
132
 
133
 
 
 
 
 
 
 
 
134
  ## πŸ“ Citation
135
 
136
  If you find this work is relevant with your research or applications, please feel free to cite our work!