TrashHobbit commited on
Commit
d7d13f8
Β·
verified Β·
1 Parent(s): 9e668bf

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +58 -208
README.md CHANGED
@@ -1,221 +1,71 @@
1
- # Dakota AI Demos Monorepo
2
-
3
- A professional demo portfolio showcasing Dakota AI's machine learning and data science capabilities. Built with a modern monorepo structure using Vercel for deployment.
4
-
5
- ## πŸš€ **Quick Start**
6
-
7
- ### Prerequisites
8
- - Node.js 18+
9
- - npm or yarn
10
- - GitHub account
11
- - Vercel account (optional for deployment)
12
-
13
- ### Setup
14
- ```bash
15
- # Clone the repository
16
- git clone https://github.com/neil-andrew-olson/dakotaai-demos.git
17
- cd dakotaai-demos
18
-
19
- # Install dependencies
20
- npm install
21
-
22
- # Run development server
23
- npm run dev
24
- ```
25
-
26
- ## πŸ“ **Project Structure**
27
-
28
- ```
29
- dakotaai-demos/
30
- β”œβ”€β”€ apps/ # Demo applications
31
- β”‚ β”œβ”€β”€ image-classifier/ # AI Image Classification Demo
32
- β”‚ β”‚ β”œβ”€β”€ pages/ # Next.js pages
33
- β”‚ β”‚ β”œβ”€β”€ styles/ # Component styles
34
- β”‚ β”‚ β”œβ”€β”€ public/ # Static assets
35
- β”‚ β”‚ └── package.json # App-specific dependencies
36
- β”‚ └── [future-demos]/ # Additional demos
37
- β”œβ”€β”€ packages/ # Shared packages (future)
38
- β”œβ”€β”€ vercel.json # Vercel configuration
39
- └── package.json # Root configuration
40
- ```
41
-
42
- ## 🎯 **Current Demos**
43
-
44
- ### **AI Image Classifier**
45
- 🧠 **Transfer Learning Demo**
46
- - Upload any image for classification
47
- - Uses VGG16 pre-trained model fine-tuned on CIFAR-10
48
- - Intelligent feature analysis with confidence scoring
49
- - Serverless API with Vercel functions
50
-
51
- **URL:** `https://your-domain.vercel.app/` (or `http://localhost:3000`)
52
-
53
- **Features:**
54
- - Drag & drop image upload
55
- - Real-time classification results
56
- - Top 3 predictions with confidence bars
57
- - Educational explanations
58
- - Responsive design
59
-
60
- ## πŸ”§ **Development**
61
-
62
- ### **Starting Development**
63
- ```bash
64
- # Install root dependencies
65
- npm install
66
-
67
- # Start development server
68
- npm run dev
69
- ```
70
-
71
- ### **Adding a New Demo**
72
- ```bash
73
- # Create new app directory
74
- mkdir apps/new-demo
75
- cd apps/new-demo
76
-
77
- # Initialize Next.js app
78
- npx create-next-app . --typescript --tailwind
79
-
80
- # Add to root package.json workspaces
81
- # "workspaces": ["apps/image-classifier", "apps/new-demo"]
82
- ```
83
-
84
- ### **Testing API Routes**
85
- ```bash
86
- # Test the classification API
87
- curl -X POST http://localhost:3000/api/classify \
88
89
- ```
90
-
91
- ## πŸš€ **Deployment**
92
-
93
- ### **Automatic Deployment with Vercel**
94
-
95
- #### **Connect to GitHub:**
96
- 1. Go to [vercel.com](https://vercel.com) and sign in
97
- 2. Click "Import Project"
98
- 3. Connect your GitHub repository
99
- 4. Vercel will automatically detect the monorepo structure
100
-
101
- #### **Monorepo Configuration:**
102
- The `vercel.json` file handles routing for the monorepo:
103
- - `/` β†’ Image Classifier app
104
- - `/api/*` β†’ Serverless API routes
105
- - Future apps can have their own routes
106
-
107
- #### **Custom Domains:**
108
- ```bash
109
- # Set up custom domain
110
- vercel domains add classifier.dakotaai.us
111
- vercel domains add analytics.dakotaai.us
112
- vercel domains add forecasting.dakotaai.us
113
- ```
114
-
115
- ### **Environment Variables**
116
- Add to Vercel dashboard or `.env.local`:
117
- ```env
118
- VERCEL_URL=https://your-domain.vercel.app
119
- # Add API keys for external services if needed
120
- ```
121
-
122
- ## πŸ€– **AI Model Setup**
123
-
124
- ### **TensorFlow.js Model**
125
- The demo includes tools to convert your trained models:
126
-
127
- ```bash
128
- # Convert your .h5 model
129
- pip install tensorflowjs
130
- tensorflowjs_converter --input_format keras your-model.h5 model/
131
- ```
132
-
133
- Place converted model files in `apps/image-classifier/public/models/`
134
-
135
- ### **Serverless API**
136
- The `/api/classify` endpoint can be extended to:
137
- 1. Load your converted TensorFlow.js model
138
- 2. Process uploaded images
139
- 3. Return real AI predictions
140
 
141
- ## 🎨 **Customization**
142
 
143
- ### **Styling**
144
- - Uses CSS Modules for component styling
145
- - Responsive design with mobile-first approach
146
- - Easy theme customization in `styles/` directory
147
 
148
- ### **Adding Features**
149
- - Add new pages in `pages/` directory
150
- - Create API routes in `pages/api/` directory
151
- - Use shared components from `packages/` (future)
152
 
153
- ## πŸ“Š **Analytics & Monitoring**
 
 
 
154
 
155
- ### **Vercel Analytics**
156
- The app includes automatic performance monitoring:
157
- - Page load speeds
158
- - API response times
159
- - Error tracking
160
- - Real user metrics
 
 
 
 
 
161
 
162
- ### **Custom Analytics**
163
- ```javascript
164
- // Add to _app.js
165
- import { Analytics } from '@vercel/analytics/react';
166
 
167
- export default function App({ Component, pageProps }) {
168
- return (
169
- <>
170
- <Component {...pageProps} />
171
- <Analytics />
172
- </>
173
- );
174
- }
175
  ```
176
 
177
- ## πŸ› οΈ **Tech Stack**
178
-
179
- - **Frontend:** Next.js 14, React, CSS Modules
180
- - **Backend:** Vercel Serverless Functions
181
- - **AI/ML:** TensorFlow.js, Python (for model training)
182
- - **Deployment:** Vercel
183
- - **Version Control:** Git, GitHub
184
-
185
- ## πŸ“ˆ **Performance Features**
186
-
187
- - **Edge Functions:** Global CDN for fast responses
188
- - **Automatic Scaling:** Handles traffic spikes
189
- - **Static Optimization:** Fast page loads
190
- - **Image Optimization:** Built-in Next.js optimization
191
-
192
- ## πŸ”’ **Security**
193
 
194
- - **HTTPS:** Automatic SSL certificates
195
- - **CORS Handling:** Proper API security
196
- - **Input Validation:** Client and server-side validation
197
- - **Error Handling:** Graceful error responses
198
 
199
- ## πŸš€ **Future Enhancements**
200
 
201
- - [ ] Add more demo applications
202
- - [ ] Implement shared UI component library
203
- - [ ] Add test suites
204
- - [ ] Set up CI/CD pipelines
205
- - [ ] Add monitoring dashboards
206
- - [ ] Implement authentication for admin features
207
-
208
- ## πŸ“ž **Support**
209
-
210
- For questions or contributions:
211
- - Create GitHub issues
212
- - Submit pull requests
213
- - Contact Dakota AI team
214
-
215
- ## πŸ“„ **License**
216
-
217
- MIT License - feel free to use for your own demo portfolios!
218
-
219
- ---
220
 
221
- **Built with ❀️ by Dakota AI team**
 
1
+ ---
2
+ language: en
3
+ license: mit
4
+ tags:
5
+ - cifar10
6
+ - image-classification
7
+ - keras
8
+ - tensorflow
9
+ - custom-model
10
+ - dakota-ai
11
+ datasets:
12
+ - cifar10
13
+ model-index:
14
+ - name: Dakota AI CIFAR-10 Classifier
15
+ results:
16
+ - task:
17
+ type: image-classification
18
+ name: Image Classification
19
+ dataset:
20
+ type: cifar10
21
+ name: CIFAR-10
22
+ split: test
23
+ metrics:
24
+ - type: accuracy
25
+ value: 95.0
26
+ name: Accuracy
27
+ ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
28
 
29
+ # Dakota AI CIFAR-10 Image Classifier
30
 
31
+ This is a high-accuracy image classifier trained on the CIFAR-10 dataset using transfer learning with VGG16 as the base model.
 
 
 
32
 
33
+ ## Model Details
 
 
 
34
 
35
+ - **Architecture**: VGG16 Transfer Learning + Custom Classification Head
36
+ - **Input Size**: 224Γ—224Γ—3 pixels
37
+ - **Output**: 10 CIFAR-10 classes
38
+ - **Accuracy**: 95%+ validation accuracy achieved
39
 
40
+ ### CIFAR-10 Classes
41
+ 0. Airplane
42
+ 1. Automobile
43
+ 2. Bird
44
+ 3. Cat
45
+ 4. Deer
46
+ 5. Dog
47
+ 6. Frog
48
+ 7. Horse
49
+ 8. Ship
50
+ 9. Truck
51
 
52
+ ## Usage
 
 
 
53
 
54
+ ```python
55
+ from huggingface_hub import from_pretrained_keras
56
+ model = from_pretrained_keras("TrashHobbit/dakota-ai-cifar10-classifier")
 
 
 
 
 
57
  ```
58
 
59
+ ## Training Details
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
60
 
61
+ - Transfer learning from pre-trained VGG16
62
+ - Data augmentation and regularization
63
+ - Early stopping and learning rate scheduling
64
+ - Custom loss and optimization strategies
65
 
66
+ ## Performance
67
 
68
+ - **Validation Accuracy**: 95%+
69
+ - **Test Accuracy**: 95%+
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
70
 
71
+ Built by Dakota AI for the Dakota AI Image Classification Demo.