File size: 2,282 Bytes
494de57
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e31519e
 
 
 
 
 
 
 
494de57
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
---
base_model: Spestly/Athena-3-14B
language:
- en
- zh
- fr
- es
- pt
- de
- it
- ru
- ja
- ko
- vi
- th
- ar
- fa
- he
- tr
- cs
- pl
- hi
- bn
- ur
- id
- ms
- lo
- my
- ceb
- km
- tl
- nl
license: mit
tags:
- chemistry
- biology
- code
- text-generation-inference
- STEM
- unsloth
- transformers
- qwen2
- trl
- llama-cpp
- gguf-my-repo
---

# Triangle104/Athena-3-14B-Q4_K_S-GGUF
This model was converted to GGUF format from [`Spestly/Athena-3-14B`](https://huggingface.co/Spestly/Athena-3-14B) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
Refer to the [original model card](https://huggingface.co/Spestly/Athena-3-14B) for more details on the model.

---
Athena-3-14B is a 14.0-billion-parameter causal 
language model fine-tuned from Qwen2.5-14B-Instruct. This model is 
designed to provide highly fluent, contextually aware, and logically 
sound outputs across a broad range of NLP and reasoning tasks. It 
balances instruction-following with generative flexibility.

---
## Use with llama.cpp
Install llama.cpp through brew (works on Mac and Linux)

```bash
brew install llama.cpp

```
Invoke the llama.cpp server or the CLI.

### CLI:
```bash
llama-cli --hf-repo Triangle104/Athena-3-14B-Q4_K_S-GGUF --hf-file athena-3-14b-q4_k_s.gguf -p "The meaning to life and the universe is"
```

### Server:
```bash
llama-server --hf-repo Triangle104/Athena-3-14B-Q4_K_S-GGUF --hf-file athena-3-14b-q4_k_s.gguf -c 2048
```

Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well.

Step 1: Clone llama.cpp from GitHub.
```
git clone https://github.com/ggerganov/llama.cpp
```

Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).
```
cd llama.cpp && LLAMA_CURL=1 make
```

Step 3: Run inference through the main binary.
```
./llama-cli --hf-repo Triangle104/Athena-3-14B-Q4_K_S-GGUF --hf-file athena-3-14b-q4_k_s.gguf -p "The meaning to life and the universe is"
```
or 
```
./llama-server --hf-repo Triangle104/Athena-3-14B-Q4_K_S-GGUF --hf-file athena-3-14b-q4_k_s.gguf -c 2048
```