Triangle104 commited on
Commit
67010ee
·
verified ·
1 Parent(s): a6772a6

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +36 -0
README.md CHANGED
@@ -114,6 +114,42 @@ model-index:
114
  This model was converted to GGUF format from [`HumanLLMs/Human-Like-Mistral-Nemo-Instruct-2407`](https://huggingface.co/HumanLLMs/Human-Like-Mistral-Nemo-Instruct-2407) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
115
  Refer to the [original model card](https://huggingface.co/HumanLLMs/Human-Like-Mistral-Nemo-Instruct-2407) for more details on the model.
116
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
117
  ## Use with llama.cpp
118
  Install llama.cpp through brew (works on Mac and Linux)
119
 
 
114
  This model was converted to GGUF format from [`HumanLLMs/Human-Like-Mistral-Nemo-Instruct-2407`](https://huggingface.co/HumanLLMs/Human-Like-Mistral-Nemo-Instruct-2407) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
115
  Refer to the [original model card](https://huggingface.co/HumanLLMs/Human-Like-Mistral-Nemo-Instruct-2407) for more details on the model.
116
 
117
+ ---
118
+ Model details:
119
+ -
120
+ This model is a fine-tuned version of mistralai/Mistral-Nemo-Instruct-2407, specifically optimized to generate more human-like and conversational responses.
121
+
122
+ The fine-tuning process employed both Low-Rank Adaptation (LoRA) and Direct Preference Optimization (DPO) to enhance natural language understanding, conversational coherence, and emotional intelligence in interactions.
123
+
124
+ The proccess of creating this models is detailed in the research paper “Enhancing Human-Like Responses in Large Language Models”.
125
+
126
+ 🛠️ Training Configuration
127
+
128
+ Base Model: Mistral-Nemo-Instruct-2407
129
+ Framework: Axolotl v0.4.1
130
+ Hardware: 2x NVIDIA A100 (80 GB) GPUs
131
+ Training Time: ~3 hours 40 minutes
132
+ Dataset: Synthetic dataset with ≈11,000 samples across 256 diverse topics
133
+
134
+
135
+ 💬 Prompt Template
136
+
137
+ You can use Mistral-Nemo prompt template while using the model:
138
+
139
+ Mistral-Nemo
140
+
141
+ <s>[INST] Hello, how are you? [/INST]I'm doing great. How can I help you today?</s> [INST] I'd like to show off how chat templating works! [/INST]
142
+
143
+ This prompt template is available as a chat template, which means you can format messages using the tokenizer.apply_chat_template() method:
144
+
145
+ messages = [
146
+ {"role": "system", "content": "You are helpful AI asistant."},
147
+ {"role": "user", "content": "Hello!"}
148
+ ]
149
+ gen_input = tokenizer.apply_chat_template(message, return_tensors="pt")
150
+ model.generate(**gen_input)
151
+
152
+ ---
153
  ## Use with llama.cpp
154
  Install llama.cpp through brew (works on Mac and Linux)
155