--- tags: - chat - llama-cpp - gguf-my-repo base_model: Goekdeniz-Guelmez/Josiefied-Qwen3-8B-abliterated-v1 pipeline_tag: text-generation library_name: transformers --- # Triangle104/Josiefied-Qwen3-8B-abliterated-v1-Q8_0-GGUF This model was converted to GGUF format from [`Goekdeniz-Guelmez/Josiefied-Qwen3-8B-abliterated-v1`](https://huggingface.co/Goekdeniz-Guelmez/Josiefied-Qwen3-8B-abliterated-v1) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/Goekdeniz-Guelmez/Josiefied-Qwen3-8B-abliterated-v1) for more details on the model. --- The JOSIEFIED model family represents a series of highly advanced language models built upon renowned architectures such as Alibaba’s Qwen2/2.5/3, Google’s Gemma3, and Meta’s LLaMA3/4. Covering sizes from 0.5B to 32B parameters, these models have been significantly modified (“abliterated”) and further fine-tuned to maximize uncensored behavior without compromising tool usage or instruction-following abilities. Despite their rebellious spirit, the JOSIEFIED models often outperform their base counterparts on standard benchmarks — delivering both raw power and utility. These models are intended for advanced users who require unrestricted, high-performance language generation. --- ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo Triangle104/Josiefied-Qwen3-8B-abliterated-v1-Q8_0-GGUF --hf-file josiefied-qwen3-8b-abliterated-v1-q8_0.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo Triangle104/Josiefied-Qwen3-8B-abliterated-v1-Q8_0-GGUF --hf-file josiefied-qwen3-8b-abliterated-v1-q8_0.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo Triangle104/Josiefied-Qwen3-8B-abliterated-v1-Q8_0-GGUF --hf-file josiefied-qwen3-8b-abliterated-v1-q8_0.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo Triangle104/Josiefied-Qwen3-8B-abliterated-v1-Q8_0-GGUF --hf-file josiefied-qwen3-8b-abliterated-v1-q8_0.gguf -c 2048 ```