File size: 2,680 Bytes
55d6418
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dc97c6b
 
 
 
 
 
55d6418
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
---
license: apache-2.0
base_model: allura-org/Q3-8B-Kintsugi
library_name: transformers
tags:
- mergekit
- axolotl
- unsloth
- roleplay
- conversational
- llama-cpp
- gguf-my-repo
datasets:
- PygmalionAI/PIPPA
- Alfitaria/nemotron-ultra-reasoning-synthkink
- PocketDoc/Dans-Prosemaxx-Gutenberg
- FreedomIntelligence/Medical-R1-Distill-Data
- cognitivecomputations/SystemChat-2.0
- allenai/tulu-3-sft-personas-instruction-following
- kalomaze/Opus_Instruct_25k
- simplescaling/s1K-claude-3-7-sonnet
- ai2-adapt-dev/flan_v2_converted
- grimulkan/theory-of-mind
- grimulkan/physical-reasoning
- nvidia/HelpSteer3
- nbeerbower/gutenberg2-dpo
- nbeerbower/gutenberg-moderne-dpo
- nbeerbower/Purpura-DPO
- antiven0m/physical-reasoning-dpo
- allenai/tulu-3-IF-augmented-on-policy-70b
- NobodyExistsOnTheInternet/system-message-DPO
---

# Triangle104/Q3-8B-Kintsugi-Q8_0-GGUF
This model was converted to GGUF format from [`allura-org/Q3-8B-Kintsugi`](https://huggingface.co/allura-org/Q3-8B-Kintsugi) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
Refer to the [original model card](https://huggingface.co/allura-org/Q3-8B-Kintsugi) for more details on the model.

---
Q3-8B-Kintsugi is a roleplaying model finetuned from Qwen3-8B-Base.

During testing, Kintsugi punched well above its weight class in terms of parameters, especially for 1-on-1 roleplaying and general storywriting.

---
## Use with llama.cpp
Install llama.cpp through brew (works on Mac and Linux)

```bash
brew install llama.cpp

```
Invoke the llama.cpp server or the CLI.

### CLI:
```bash
llama-cli --hf-repo Triangle104/Q3-8B-Kintsugi-Q8_0-GGUF --hf-file q3-8b-kintsugi-q8_0.gguf -p "The meaning to life and the universe is"
```

### Server:
```bash
llama-server --hf-repo Triangle104/Q3-8B-Kintsugi-Q8_0-GGUF --hf-file q3-8b-kintsugi-q8_0.gguf -c 2048
```

Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well.

Step 1: Clone llama.cpp from GitHub.
```
git clone https://github.com/ggerganov/llama.cpp
```

Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).
```
cd llama.cpp && LLAMA_CURL=1 make
```

Step 3: Run inference through the main binary.
```
./llama-cli --hf-repo Triangle104/Q3-8B-Kintsugi-Q8_0-GGUF --hf-file q3-8b-kintsugi-q8_0.gguf -p "The meaning to life and the universe is"
```
or 
```
./llama-server --hf-repo Triangle104/Q3-8B-Kintsugi-Q8_0-GGUF --hf-file q3-8b-kintsugi-q8_0.gguf -c 2048
```