File size: 2,352 Bytes
f17807f
 
 
 
 
 
 
 
 
 
 
 
 
c6d43eb
 
 
 
 
 
 
f17807f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
---
base_model: Skywork/Skywork-OR1-7B
datasets:
- Skywork/Skywork-OR1-RL-Data
tags:
- llama-cpp
- gguf-my-repo
---

# Triangle104/Skywork-OR1-7B-Q4_K_M-GGUF
This model was converted to GGUF format from [`Skywork/Skywork-OR1-7B`](https://huggingface.co/Skywork/Skywork-OR1-7B) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
Refer to the [original model card](https://huggingface.co/Skywork/Skywork-OR1-7B) for more details on the model.

---
The Skywork-OR1 (Open Reasoner 1) model series consists of powerful math and code reasoning models trained using large-scale rule-based reinforcement learning with carefully designed datasets and training recipes. This series includes two general-purpose reasoning modelsl, Skywork-OR1-7B and Skywork-OR1-32B.

- Skywork-OR1-32B outperforms Deepseek-R1 and Qwen3-32B on math tasks (AIME24 and AIME25) and delivers comparable performance on coding tasks (LiveCodeBench).
- Skywork-OR1-7B exhibits competitive performance compared to similarly sized models in both math and coding scenarios.

---
## Use with llama.cpp
Install llama.cpp through brew (works on Mac and Linux)

```bash
brew install llama.cpp

```
Invoke the llama.cpp server or the CLI.

### CLI:
```bash
llama-cli --hf-repo Triangle104/Skywork-OR1-7B-Q4_K_M-GGUF --hf-file skywork-or1-7b-q4_k_m.gguf -p "The meaning to life and the universe is"
```

### Server:
```bash
llama-server --hf-repo Triangle104/Skywork-OR1-7B-Q4_K_M-GGUF --hf-file skywork-or1-7b-q4_k_m.gguf -c 2048
```

Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well.

Step 1: Clone llama.cpp from GitHub.
```
git clone https://github.com/ggerganov/llama.cpp
```

Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).
```
cd llama.cpp && LLAMA_CURL=1 make
```

Step 3: Run inference through the main binary.
```
./llama-cli --hf-repo Triangle104/Skywork-OR1-7B-Q4_K_M-GGUF --hf-file skywork-or1-7b-q4_k_m.gguf -p "The meaning to life and the universe is"
```
or 
```
./llama-server --hf-repo Triangle104/Skywork-OR1-7B-Q4_K_M-GGUF --hf-file skywork-or1-7b-q4_k_m.gguf -c 2048
```