--- base_model: nbeerbower/Xiaolong-Qwen3-0.6B datasets: - nbeerbower/GreatFirewall-DPO - nbeerbower/Schule-DPO - nbeerbower/Purpura-DPO - nbeerbower/Arkhaios-DPO - jondurbin/truthy-dpo-v0.1 - antiven0m/physical-reasoning-dpo - flammenai/Date-DPO-NoAsterisks - flammenai/Prude-Phi3-DPO - Atsunori/HelpSteer2-DPO - jondurbin/gutenberg-dpo-v0.1 - nbeerbower/gutenberg2-dpo - nbeerbower/gutenberg-moderne-dpo - GeneralReasoning/GeneralThought-430K - nvidia/OpenMathReasoning - nvidia/OpenCodeReasoning library_name: transformers license: apache-2.0 tags: - orpo - uncensored - reasoning - cot - llama-cpp - gguf-my-repo --- # Triangle104/Xiaolong-Qwen3-0.6B-Q4_K_S-GGUF This model was converted to GGUF format from [`nbeerbower/Xiaolong-Qwen3-0.6B`](https://huggingface.co/nbeerbower/Xiaolong-Qwen3-0.6B) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/nbeerbower/Xiaolong-Qwen3-0.6B) for more details on the model. --- Xiaolong is a small, uncensored, reasoning-focused model finetuned using ORPO and QLoRA on top of Qwen3-0.6B-abliterated-TIES. Finetuning Details - - Method: ORPO - Epochs: 1.3 - Learning Rate: 5e-6, cosine decay w/ 5% warmup - Batch Size: 4 x 8 (32 effective) - Max Grad Norm: 0.3 - LoRA Rank: 64 - Hardware: 1x NVIDIA RTX A6000 Dataset Composition - ~9,100 samples. 3,000 used Chain of Thought reasoning. - nbeerbower/GreatFirewall-DPO - nbeerbower/Schule-DPO - nbeerbower/Purpura-DPO - nbeerbower/Arkhaios-DPO - jondurbin/truthy-dpo-v0.1 - antiven0m/physical-reasoning-dpo - flammenai/Date-DPO-NoAsterisks - flammenai/Prude-Phi3-DPO - Atsunori/HelpSteer2-DPO (1000 samples) - jondurbin/gutenberg-dpo-v0.1 - nbeerbower/gutenberg2-dpo - nbeerbower/gutenberg-moderne-dpo Chain of Thought - - GeneralReasoning/GeneralThought-430K (1000 samples) - nvidia/OpenMathReasoning (1000 samples) - nvidia/OpenCodeReasoning (1000 samples) --- ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo Triangle104/Xiaolong-Qwen3-0.6B-Q4_K_S-GGUF --hf-file xiaolong-qwen3-0.6b-q4_k_s.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo Triangle104/Xiaolong-Qwen3-0.6B-Q4_K_S-GGUF --hf-file xiaolong-qwen3-0.6b-q4_k_s.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo Triangle104/Xiaolong-Qwen3-0.6B-Q4_K_S-GGUF --hf-file xiaolong-qwen3-0.6b-q4_k_s.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo Triangle104/Xiaolong-Qwen3-0.6B-Q4_K_S-GGUF --hf-file xiaolong-qwen3-0.6b-q4_k_s.gguf -c 2048 ```