Token Classification
spaCy
Tagalog
Eval Results
ljvmiranda921 commited on
Commit
dade705
·
verified ·
1 Parent(s): 9097307

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +28 -0
README.md CHANGED
@@ -15,6 +15,10 @@ model-index:
15
  - name: TAG (XPOS) Accuracy
16
  type: accuracy
17
  value: 0.9132229517
 
 
 
 
18
  - task:
19
  name: POS
20
  type: token-classification
@@ -22,6 +26,10 @@ model-index:
22
  - name: POS (UPOS) Accuracy
23
  type: accuracy
24
  value: 0.9560235273
 
 
 
 
25
  - task:
26
  name: MORPH
27
  type: token-classification
@@ -29,6 +37,10 @@ model-index:
29
  - name: Morph (UFeats) Accuracy
30
  type: accuracy
31
  value: 0.9536528845
 
 
 
 
32
  - task:
33
  name: LEMMA
34
  type: token-classification
@@ -36,6 +48,10 @@ model-index:
36
  - name: Lemma Accuracy
37
  type: accuracy
38
  value: 0.9042365534
 
 
 
 
39
  - task:
40
  name: UNLABELED_DEPENDENCIES
41
  type: token-classification
@@ -43,6 +59,10 @@ model-index:
43
  - name: Unlabeled Attachment Score (UAS)
44
  type: f_score
45
  value: 0.8605572362
 
 
 
 
46
  - task:
47
  name: LABELED_DEPENDENCIES
48
  type: token-classification
@@ -50,6 +70,10 @@ model-index:
50
  - name: Labeled Attachment Score (LAS)
51
  type: f_score
52
  value: 0.799879978
 
 
 
 
53
  - task:
54
  name: SENTS
55
  type: token-classification
@@ -57,6 +81,10 @@ model-index:
57
  - name: Sentences F-Score
58
  type: f_score
59
  value: 0.9926447074
 
 
 
 
60
  datasets:
61
  - UD-Filipino/UD_Tagalog-NewsCrawl
62
  base_model:
 
15
  - name: TAG (XPOS) Accuracy
16
  type: accuracy
17
  value: 0.9132229517
18
+ dataset:
19
+ type: UD-Filipino/UD_Tagalog-NewsCrawl
20
+ name: UD_Tagalog-NewsCrawl
21
+ split: validation
22
  - task:
23
  name: POS
24
  type: token-classification
 
26
  - name: POS (UPOS) Accuracy
27
  type: accuracy
28
  value: 0.9560235273
29
+ dataset:
30
+ type: UD-Filipino/UD_Tagalog-NewsCrawl
31
+ name: UD_Tagalog-NewsCrawl
32
+ split: validation
33
  - task:
34
  name: MORPH
35
  type: token-classification
 
37
  - name: Morph (UFeats) Accuracy
38
  type: accuracy
39
  value: 0.9536528845
40
+ dataset:
41
+ type: UD-Filipino/UD_Tagalog-NewsCrawl
42
+ name: UD_Tagalog-NewsCrawl
43
+ split: validation
44
  - task:
45
  name: LEMMA
46
  type: token-classification
 
48
  - name: Lemma Accuracy
49
  type: accuracy
50
  value: 0.9042365534
51
+ dataset:
52
+ type: UD-Filipino/UD_Tagalog-NewsCrawl
53
+ name: UD_Tagalog-NewsCrawl
54
+ split: validation
55
  - task:
56
  name: UNLABELED_DEPENDENCIES
57
  type: token-classification
 
59
  - name: Unlabeled Attachment Score (UAS)
60
  type: f_score
61
  value: 0.8605572362
62
+ dataset:
63
+ type: UD-Filipino/UD_Tagalog-NewsCrawl
64
+ name: UD_Tagalog-NewsCrawl
65
+ split: validation
66
  - task:
67
  name: LABELED_DEPENDENCIES
68
  type: token-classification
 
70
  - name: Labeled Attachment Score (LAS)
71
  type: f_score
72
  value: 0.799879978
73
+ dataset:
74
+ type: UD-Filipino/UD_Tagalog-NewsCrawl
75
+ name: UD_Tagalog-NewsCrawl
76
+ split: validation
77
  - task:
78
  name: SENTS
79
  type: token-classification
 
81
  - name: Sentences F-Score
82
  type: f_score
83
  value: 0.9926447074
84
+ dataset:
85
+ type: UD-Filipino/UD_Tagalog-NewsCrawl
86
+ name: UD_Tagalog-NewsCrawl
87
+ split: validation
88
  datasets:
89
  - UD-Filipino/UD_Tagalog-NewsCrawl
90
  base_model: