File size: 1,226 Bytes
fb23eb8
 
f6be7d7
 
 
 
 
 
 
 
fb23eb8
f6be7d7
9444c2b
f6be7d7
 
 
 
 
 
 
 
9444c2b
 
 
 
 
125d0a5
f6be7d7
125d0a5
 
 
 
 
 
 
f6be7d7
 
125d0a5
 
9444c2b
f6be7d7
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
---
license: mit
datasets:
- mrqa
language:
- en
metrics:
- squad
library_name: adapter-transformers
pipeline_tag: question-answering
---

# Description
This is the MADE encoder model created by Friedman et al. (2021). This encoder should be used along with the following dataset-specific adapters. 
- https://huggingface.co/UKP-SQuARE/MADE_HotpotQA_Adapter
- https://huggingface.co/UKP-SQuARE/MADE_TriviaQA_Adapter
- https://huggingface.co/UKP-SQuARE/MADE_SQuAD_Adapter
- https://huggingface.co/UKP-SQuARE/MADE_SearchQA_Adapter
- https://huggingface.co/UKP-SQuARE/MADE_NewsQA_Adapter
- https://huggingface.co/UKP-SQuARE/MADE_NaturalQuestions_Adapter

The UKP-SQuARE team created this model repository to simplify the deployment of this model on the UKP-SQuARE platform. The GitHub repository of the original authors is https://github.com/princeton-nlp/MADE



# Evaluation Results
Friedman et al. (2021) reported the following results:

- SQuAD v1.1: 92.4
- HotoptQA: 81.5
- TriviaQA: 80.5
- NewsQA: 72.1
- SearchQA: 85.8
- NaturalQuestions: 80.9
- Avg: 82.2


Please refer to the original publication for more information.

# Citation
Single-dataset Experts for Multi-dataset Question Answering (Friedman et al., EMNLP 2021)