Commit
·
77470a8
1
Parent(s):
bf01a04
Update README.md
Browse files
README.md
CHANGED
@@ -268,40 +268,56 @@ should probably proofread and complete it, then remove this comment. -->
|
|
268 |
|
269 |
# FLAN-T5-NLP-Paper-to-Question-Generation
|
270 |
|
271 |
-
This model is a fine-tuned version of [google/flan-t5-large](https://huggingface.co/google/flan-t5-large) on an
|
272 |
-
It achieves the following results on the evaluation set:
|
273 |
-
- Loss: 0.4504
|
274 |
|
275 |
-
## Model description
|
276 |
|
277 |
-
More information needed
|
278 |
|
279 |
-
##
|
280 |
|
281 |
-
More information needed
|
282 |
|
283 |
-
|
|
|
|
|
284 |
|
285 |
-
|
|
|
|
|
286 |
|
287 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
288 |
|
289 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
290 |
|
291 |
-
The following hyperparameters were used during training:
|
292 |
-
- learning_rate: 0.0001
|
293 |
-
- train_batch_size: 1
|
294 |
-
- eval_batch_size: 1
|
295 |
-
- seed: 42
|
296 |
-
- gradient_accumulation_steps: 16
|
297 |
-
- total_train_batch_size: 16
|
298 |
-
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
299 |
-
- lr_scheduler_type: linear
|
300 |
-
- lr_scheduler_warmup_steps: 184
|
301 |
-
- num_epochs: 10
|
302 |
|
303 |
### Training results
|
304 |
|
|
|
|
|
|
|
|
|
305 |
| Training Loss | Epoch | Step | Validation Loss |
|
306 |
|:-------------:|:-----:|:----:|:---------------:|
|
307 |
| No log | 0.99 | 46 | 34.6109 |
|
@@ -315,10 +331,31 @@ The following hyperparameters were used during training:
|
|
315 |
| 0.4811 | 8.94 | 414 | 0.4505 |
|
316 |
| 0.4721 | 9.93 | 460 | 0.4504 |
|
317 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
318 |
|
319 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
320 |
|
321 |
-
- Transformers 4.35.2
|
322 |
-
- Pytorch 2.1.0+cu118
|
323 |
-
- Datasets 2.15.0
|
324 |
-
- Tokenizers 0.15.0
|
|
|
268 |
|
269 |
# FLAN-T5-NLP-Paper-to-Question-Generation
|
270 |
|
271 |
+
This model is a fine-tuned version of [google/flan-t5-large](https://huggingface.co/google/flan-t5-large) on an [allenai/QASPER: a dataset for question answering on scientific research papers ](https://huggingface.co/datasets/allenai/qasper)-based [NLP-Paper-to-QA-Generation](https://huggingface.co/datasets/UNIST-Eunchan/NLP-Paper-to-QA-Generation) dataset.
|
|
|
|
|
272 |
|
|
|
273 |
|
|
|
274 |
|
275 |
+
## How to Use ( Code Snippets )
|
276 |
|
|
|
277 |
|
278 |
+
### # Load model directly
|
279 |
+
```(python)
|
280 |
+
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
281 |
|
282 |
+
tokenizer = AutoTokenizer.from_pretrained("UNIST-Eunchan/FLAN-T5-NLP-Paper-to-Question-Generation")
|
283 |
+
model = AutoModelForSeq2SeqLM.from_pretrained("UNIST-Eunchan/FLAN-T5-NLP-Paper-to-Question-Generation")
|
284 |
+
```
|
285 |
|
286 |
+
### Prompting Input
|
287 |
+
```(python)
|
288 |
+
txt = r"""
|
289 |
+
Generate Question, Answer pair correspond to the following research paper.
|
290 |
+
[Abstract] + {text['abstract']} + [Introduction] + {text['introduction']}
|
291 |
+
Question, Answer:
|
292 |
+
""".replace("\n", "")
|
293 |
|
294 |
+
inputs = tokenizer(txt, max_length = 1024, truncation=True, padding="max_length", return_tensors="pt")
|
295 |
+
```
|
296 |
+
|
297 |
+
### For Multiple Question Generation (👍)
|
298 |
+
```(python)
|
299 |
+
summaries = model.generate(input_ids =inputs["input_ids"], max_new_tokens=100, do_sample = True, top_p = 0.95, num_return_sequences = 4)
|
300 |
+
```
|
301 |
+
### For Single Question Generation
|
302 |
+
```(python)
|
303 |
+
summaries = model.generate(input_ids =inputs["input_ids"], max_new_tokens=100, do_sample = True, top_p = 0.95)
|
304 |
+
```
|
305 |
+
|
306 |
+
|
307 |
+
|
308 |
+
```
|
309 |
+
decoded_summaries = [tokenizer.decode(s, skip_special_tokens=False, clean_up_tokenization_spaces=True) for s in summaries]
|
310 |
+
decoded_summaries = [d.replace("<n>", " ").replace(tokenizer.pad_token, "").replace(tokenizer.eos_token, "") for d in decoded_summaries]
|
311 |
+
|
312 |
+
```
|
313 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
314 |
|
315 |
### Training results
|
316 |
|
317 |
+
|
318 |
+
It achieves the following results on the evaluation set:
|
319 |
+
- Loss: 0.4504
|
320 |
+
|
321 |
| Training Loss | Epoch | Step | Validation Loss |
|
322 |
|:-------------:|:-----:|:----:|:---------------:|
|
323 |
| No log | 0.99 | 46 | 34.6109 |
|
|
|
331 |
| 0.4811 | 8.94 | 414 | 0.4505 |
|
332 |
| 0.4721 | 9.93 | 460 | 0.4504 |
|
333 |
|
334 |
+
## Model description
|
335 |
+
|
336 |
+
- FLAN-T5-Large (770M)
|
337 |
+
|
338 |
+
## Intended uses & limitations
|
339 |
+
|
340 |
+
- NLP Paper's Abstract + Introduction --> {Question} [SEP] {Answer}
|
341 |
+
|
342 |
+
|
343 |
+
## Training and evaluation data
|
344 |
+
- Used Dataset: [UNIST-Eunchan/NLP-Paper-to-QA-Generation](https://huggingface.co/datasets/UNIST-Eunchan/NLP-Paper-to-QA-Generation) dataset.
|
345 |
+
- Train: dataset['train'] + dataset['test']
|
346 |
+
- Evaluation: dataset['validation']
|
347 |
+
|
348 |
+
### Training hyperparameters
|
349 |
|
350 |
+
The following hyperparameters were used during training:
|
351 |
+
- learning_rate: 0.0001
|
352 |
+
- train_batch_size: 1
|
353 |
+
- eval_batch_size: 1
|
354 |
+
- seed: 42
|
355 |
+
- gradient_accumulation_steps: 16
|
356 |
+
- total_train_batch_size: 16
|
357 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
358 |
+
- lr_scheduler_type: linear
|
359 |
+
- lr_scheduler_warmup_steps: 184
|
360 |
+
- num_epochs: 10
|
361 |
|
|
|
|
|
|
|
|