lbourdois commited on
Commit
49a44fd
·
verified ·
1 Parent(s): ea555b9

Improve language tag

Browse files

Hi! As the model is multilingual, this is a PR to add other languages than English to the language tag to improve the referencing. Note that 29 languages are announced in the README, but only 13 are explicitly listed. I was therefore only able to add these 13 languages.

Files changed (1) hide show
  1. README.md +91 -77
README.md CHANGED
@@ -1,78 +1,92 @@
1
- ---
2
- library_name: peft
3
- license: other
4
- base_model: Qwen/Qwen2.5-14B-Instruct
5
- tags:
6
- - llama-factory
7
- - lora
8
- - generated_from_trainer
9
- model-index:
10
- - name: MATH_training_response_QwQ_32B_Preview
11
- results: []
12
- ---
13
-
14
- <!-- This model card has been generated automatically according to the information the Trainer had access to. You
15
- should probably proofread and complete it, then remove this comment. -->
16
-
17
- # MATH_training_response_QwQ_32B_Preview
18
-
19
- This model is a fine-tuned version of [Qwen/Qwen2.5-14B-Instruct](https://huggingface.co/Qwen/Qwen2.5-14B-Instruct) on the MATH_training_Qwen_QwQ_32B_Preview dataset.
20
- It achieves the following results on the evaluation set:
21
- - Loss: 0.2534
22
-
23
- ## Model description
24
-
25
- More information needed
26
-
27
- ## Intended uses & limitations
28
-
29
- More information needed
30
-
31
- ## Training and evaluation data
32
-
33
- More information needed
34
-
35
- ## Training procedure
36
-
37
- ### Training hyperparameters
38
-
39
- The following hyperparameters were used during training:
40
- - learning_rate: 0.0001
41
- - train_batch_size: 1
42
- - eval_batch_size: 1
43
- - seed: 42
44
- - distributed_type: multi-GPU
45
- - num_devices: 4
46
- - total_train_batch_size: 4
47
- - total_eval_batch_size: 4
48
- - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
49
- - lr_scheduler_type: cosine
50
- - lr_scheduler_warmup_ratio: 0.1
51
- - num_epochs: 2.0
52
-
53
- ### Training results
54
-
55
- | Training Loss | Epoch | Step | Validation Loss |
56
- |:-------------:|:------:|:----:|:---------------:|
57
- | 0.3648 | 0.1500 | 200 | 0.3127 |
58
- | 0.2407 | 0.3001 | 400 | 0.2855 |
59
- | 0.2113 | 0.4501 | 600 | 0.2747 |
60
- | 0.2523 | 0.6002 | 800 | 0.2683 |
61
- | 0.2713 | 0.7502 | 1000 | 0.2642 |
62
- | 0.2373 | 0.9002 | 1200 | 0.2599 |
63
- | 0.1968 | 1.0503 | 1400 | 0.2605 |
64
- | 0.2904 | 1.2003 | 1600 | 0.2587 |
65
- | 0.1625 | 1.3503 | 1800 | 0.2572 |
66
- | 0.2277 | 1.5004 | 2000 | 0.2559 |
67
- | 0.2696 | 1.6504 | 2200 | 0.2538 |
68
- | 0.2377 | 1.8005 | 2400 | 0.2540 |
69
- | 0.1775 | 1.9505 | 2600 | 0.2534 |
70
-
71
-
72
- ### Framework versions
73
-
74
- - PEFT 0.12.0
75
- - Transformers 4.46.1
76
- - Pytorch 2.5.1+cu124
77
- - Datasets 3.1.0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
78
  - Tokenizers 0.20.3
 
1
+ ---
2
+ library_name: peft
3
+ license: other
4
+ base_model: Qwen/Qwen2.5-14B-Instruct
5
+ tags:
6
+ - llama-factory
7
+ - lora
8
+ - generated_from_trainer
9
+ language:
10
+ - zho
11
+ - eng
12
+ - fra
13
+ - spa
14
+ - por
15
+ - deu
16
+ - ita
17
+ - rus
18
+ - jpn
19
+ - kor
20
+ - vie
21
+ - tha
22
+ - ara
23
+ model-index:
24
+ - name: MATH_training_response_QwQ_32B_Preview
25
+ results: []
26
+ ---
27
+
28
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
29
+ should probably proofread and complete it, then remove this comment. -->
30
+
31
+ # MATH_training_response_QwQ_32B_Preview
32
+
33
+ This model is a fine-tuned version of [Qwen/Qwen2.5-14B-Instruct](https://huggingface.co/Qwen/Qwen2.5-14B-Instruct) on the MATH_training_Qwen_QwQ_32B_Preview dataset.
34
+ It achieves the following results on the evaluation set:
35
+ - Loss: 0.2534
36
+
37
+ ## Model description
38
+
39
+ More information needed
40
+
41
+ ## Intended uses & limitations
42
+
43
+ More information needed
44
+
45
+ ## Training and evaluation data
46
+
47
+ More information needed
48
+
49
+ ## Training procedure
50
+
51
+ ### Training hyperparameters
52
+
53
+ The following hyperparameters were used during training:
54
+ - learning_rate: 0.0001
55
+ - train_batch_size: 1
56
+ - eval_batch_size: 1
57
+ - seed: 42
58
+ - distributed_type: multi-GPU
59
+ - num_devices: 4
60
+ - total_train_batch_size: 4
61
+ - total_eval_batch_size: 4
62
+ - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
63
+ - lr_scheduler_type: cosine
64
+ - lr_scheduler_warmup_ratio: 0.1
65
+ - num_epochs: 2.0
66
+
67
+ ### Training results
68
+
69
+ | Training Loss | Epoch | Step | Validation Loss |
70
+ |:-------------:|:------:|:----:|:---------------:|
71
+ | 0.3648 | 0.1500 | 200 | 0.3127 |
72
+ | 0.2407 | 0.3001 | 400 | 0.2855 |
73
+ | 0.2113 | 0.4501 | 600 | 0.2747 |
74
+ | 0.2523 | 0.6002 | 800 | 0.2683 |
75
+ | 0.2713 | 0.7502 | 1000 | 0.2642 |
76
+ | 0.2373 | 0.9002 | 1200 | 0.2599 |
77
+ | 0.1968 | 1.0503 | 1400 | 0.2605 |
78
+ | 0.2904 | 1.2003 | 1600 | 0.2587 |
79
+ | 0.1625 | 1.3503 | 1800 | 0.2572 |
80
+ | 0.2277 | 1.5004 | 2000 | 0.2559 |
81
+ | 0.2696 | 1.6504 | 2200 | 0.2538 |
82
+ | 0.2377 | 1.8005 | 2400 | 0.2540 |
83
+ | 0.1775 | 1.9505 | 2600 | 0.2534 |
84
+
85
+
86
+ ### Framework versions
87
+
88
+ - PEFT 0.12.0
89
+ - Transformers 4.46.1
90
+ - Pytorch 2.5.1+cu124
91
+ - Datasets 3.1.0
92
  - Tokenizers 0.20.3