Delete app.py
Browse files
app.py
DELETED
@@ -1,49 +0,0 @@
|
|
1 |
-
import gradio as gr
|
2 |
-
import joblib
|
3 |
-
import numpy as np
|
4 |
-
import pandas as pd
|
5 |
-
|
6 |
-
# Load the model and scaler
|
7 |
-
xg = joblib.load('xgb.joblib')
|
8 |
-
scaler = joblib.load('scaler.joblib')
|
9 |
-
|
10 |
-
# Manual encoders (replace joblib-loaded encoders)
|
11 |
-
fuel_type_encoder = {'Petrol': 0, 'Diesel': 1, 'CNG': 2}
|
12 |
-
seller_type_encoder = {'Dealer': 0, 'Individual': 1}
|
13 |
-
transmission_encoder = {'Manual': 0, 'Automatic': 1}
|
14 |
-
|
15 |
-
def Pred_func(Kms_Driven, Present_Price, Fuel_Type, Seller_Type, Transmission, Age):
|
16 |
-
try:
|
17 |
-
Fuel_Type = fuel_type_encoder[Fuel_Type]
|
18 |
-
Seller_Type = seller_type_encoder[Seller_Type]
|
19 |
-
Transmission = transmission_encoder[Transmission]
|
20 |
-
|
21 |
-
x_new = np.array([[Kms_Driven, Present_Price, Fuel_Type, Seller_Type, Transmission, Age]])
|
22 |
-
x_new = scaler.transform(x_new)
|
23 |
-
y_pred = xg.predict(x_new)
|
24 |
-
y_pred = round(y_pred[0], 2)
|
25 |
-
return str(y_pred) + 'k$'
|
26 |
-
except Exception as e:
|
27 |
-
return f"Error: {e}"
|
28 |
-
|
29 |
-
def Pred_func_csv(file):
|
30 |
-
try:
|
31 |
-
df = pd.read_csv(file)
|
32 |
-
predictions = []
|
33 |
-
|
34 |
-
for row in df.iloc[:, :].values:
|
35 |
-
fuel = fuel_type_encoder.get(row[2], -1)
|
36 |
-
seller = seller_type_encoder.get(row[3], -1)
|
37 |
-
trans = transmission_encoder.get(row[4], -1)
|
38 |
-
|
39 |
-
new_row = np.array([[row[0], row[1], fuel, seller, trans, row[5]]])
|
40 |
-
new_row = scaler.transform(new_row)
|
41 |
-
y_pred = xg.predict(new_row)
|
42 |
-
y_pred = round(y_pred[0], 2)
|
43 |
-
predictions.append(y_pred)
|
44 |
-
|
45 |
-
df['Selling_Price'] = predictions
|
46 |
-
df.to_csv('predictions.csv', index=False)
|
47 |
-
return 'predictions.csv'
|
48 |
-
except Exception as e:
|
49 |
-
return f"Error processing file: {
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|