--- library_name: peft license: apache-2.0 base_model: EleutherAI/pythia-160m tags: - axolotl - generated_from_trainer model-index: - name: f1d7c2d3-2dd0-4d57-bb03-dc09bce68f9c results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.4.1` ```yaml adapter: lora base_model: EleutherAI/pythia-160m bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 2d626c804ac807b3_train_data.json ds_type: json format: custom path: /workspace/input_data/2d626c804ac807b3_train_data.json type: field_instruction: instruction field_output: output_1 format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: null hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0001 load_in_4bit: false load_in_8bit: false local_rank: 0 logging_steps: 3 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 100 micro_batch_size: 8 mlflow_experiment_name: /tmp/2d626c804ac807b3_train_data.json model_type: AutoModelForCausalLM num_epochs: 3 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 1024 special_tokens: pad_token: <|endoftext|> strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: techspear-hub wandb_mode: online wandb_name: 3f7fae45-8e9e-4c49-9035-f4c04b728391 wandb_project: Gradients-On-Three wandb_run: your_name wandb_runid: 3f7fae45-8e9e-4c49-9035-f4c04b728391 warmup_steps: 10 weight_decay: 0.01 xformers_attention: null ```

# f1d7c2d3-2dd0-4d57-bb03-dc09bce68f9c This model is a fine-tuned version of [EleutherAI/pythia-160m](https://huggingface.co/EleutherAI/pythia-160m) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.6192 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 100 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0020 | 1 | 2.7500 | | 10.8945 | 0.0184 | 9 | 2.7422 | | 10.9398 | 0.0367 | 18 | 2.6784 | | 10.3486 | 0.0551 | 27 | 2.6385 | | 10.5315 | 0.0734 | 36 | 2.6370 | | 10.891 | 0.0918 | 45 | 2.6252 | | 10.4947 | 0.1101 | 54 | 2.6267 | | 10.219 | 0.1285 | 63 | 2.6237 | | 10.473 | 0.1469 | 72 | 2.6210 | | 10.4252 | 0.1652 | 81 | 2.6180 | | 10.736 | 0.1836 | 90 | 2.6191 | | 10.4505 | 0.2019 | 99 | 2.6192 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1