Upload 17 files
Browse files- action_head--57500_checkpoint.pt +3 -0
- added_tokens.json +24 -0
- config.json +3182 -0
- configuration_prismatic.py +144 -0
- dataset_statistics.json +133 -0
- generation_config.json +7 -0
- merges.txt +0 -0
- model.safetensors +3 -0
- modeling_prismatic.py +1499 -0
- preprocessor_config.json +114 -0
- processing_prismatic.py +257 -0
- processor_config.json +6 -0
- proprio_projector--57500_checkpoint.pt +3 -0
- special_tokens_map.json +31 -0
- tokenizer.json +0 -0
- tokenizer_config.json +211 -0
- vocab.json +0 -0
action_head--57500_checkpoint.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:f1a3151bfebf4e1a70481baaecdc744e33bfa406b2d4ddca2dbbb1f3cfafb1f3
|
| 3 |
+
size 204387786
|
added_tokens.json
ADDED
|
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"</tool_call>": 151658,
|
| 3 |
+
"<tool_call>": 151657,
|
| 4 |
+
"<|box_end|>": 151649,
|
| 5 |
+
"<|box_start|>": 151648,
|
| 6 |
+
"<|endoftext|>": 151643,
|
| 7 |
+
"<|file_sep|>": 151664,
|
| 8 |
+
"<|fim_middle|>": 151660,
|
| 9 |
+
"<|fim_pad|>": 151662,
|
| 10 |
+
"<|fim_prefix|>": 151659,
|
| 11 |
+
"<|fim_suffix|>": 151661,
|
| 12 |
+
"<|im_end|>": 151645,
|
| 13 |
+
"<|im_start|>": 151644,
|
| 14 |
+
"<|image_pad|>": 151655,
|
| 15 |
+
"<|object_ref_end|>": 151647,
|
| 16 |
+
"<|object_ref_start|>": 151646,
|
| 17 |
+
"<|quad_end|>": 151651,
|
| 18 |
+
"<|quad_start|>": 151650,
|
| 19 |
+
"<|repo_name|>": 151663,
|
| 20 |
+
"<|video_pad|>": 151656,
|
| 21 |
+
"<|vision_end|>": 151653,
|
| 22 |
+
"<|vision_pad|>": 151654,
|
| 23 |
+
"<|vision_start|>": 151652
|
| 24 |
+
}
|
config.json
ADDED
|
@@ -0,0 +1,3182 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_name_or_path": "../pretrained_models/minivla/config.json",
|
| 3 |
+
"arch_specifier": "no-align+fused-gelu-mlp",
|
| 4 |
+
"architectures": [
|
| 5 |
+
"OpenVLAForActionPrediction"
|
| 6 |
+
],
|
| 7 |
+
"auto_map": {
|
| 8 |
+
"AutoConfig": "configuration_prismatic.OpenVLAConfig",
|
| 9 |
+
"AutoModelForVision2Seq": "modeling_prismatic.OpenVLAForActionPrediction"
|
| 10 |
+
},
|
| 11 |
+
"hf_llm_id": "",
|
| 12 |
+
"image_resize_strategy": "resize-naive",
|
| 13 |
+
"image_sizes": [
|
| 14 |
+
224,
|
| 15 |
+
224
|
| 16 |
+
],
|
| 17 |
+
"llm_backbone_id": "qwen25-0_5b-extra",
|
| 18 |
+
"llm_max_length": 2048,
|
| 19 |
+
"model_type": "openvla",
|
| 20 |
+
"n_action_bins": 256,
|
| 21 |
+
"norm_stats": {
|
| 22 |
+
"austin_buds_dataset_converted_externally_to_rlds": {
|
| 23 |
+
"action": {
|
| 24 |
+
"mask": [
|
| 25 |
+
true,
|
| 26 |
+
true,
|
| 27 |
+
true,
|
| 28 |
+
true,
|
| 29 |
+
true,
|
| 30 |
+
true,
|
| 31 |
+
false
|
| 32 |
+
],
|
| 33 |
+
"max": [
|
| 34 |
+
1.0,
|
| 35 |
+
1.0,
|
| 36 |
+
1.0,
|
| 37 |
+
0.0,
|
| 38 |
+
0.0,
|
| 39 |
+
0.0,
|
| 40 |
+
1.0
|
| 41 |
+
],
|
| 42 |
+
"mean": [
|
| 43 |
+
-0.07678354531526566,
|
| 44 |
+
0.0036849044263362885,
|
| 45 |
+
0.05644911900162697,
|
| 46 |
+
0.0,
|
| 47 |
+
0.0,
|
| 48 |
+
0.0,
|
| 49 |
+
0.3510494828224182
|
| 50 |
+
],
|
| 51 |
+
"min": [
|
| 52 |
+
-1.0,
|
| 53 |
+
-1.0,
|
| 54 |
+
-1.0,
|
| 55 |
+
0.0,
|
| 56 |
+
0.0,
|
| 57 |
+
0.0,
|
| 58 |
+
0.0
|
| 59 |
+
],
|
| 60 |
+
"q01": [
|
| 61 |
+
-1.0,
|
| 62 |
+
-0.9599999785423279,
|
| 63 |
+
-0.8714285492897034,
|
| 64 |
+
0.0,
|
| 65 |
+
0.0,
|
| 66 |
+
0.0,
|
| 67 |
+
0.0
|
| 68 |
+
],
|
| 69 |
+
"q99": [
|
| 70 |
+
1.0,
|
| 71 |
+
0.8600000143051147,
|
| 72 |
+
1.0,
|
| 73 |
+
0.0,
|
| 74 |
+
0.0,
|
| 75 |
+
0.0,
|
| 76 |
+
1.0
|
| 77 |
+
],
|
| 78 |
+
"std": [
|
| 79 |
+
0.6367740631103516,
|
| 80 |
+
0.37889179587364197,
|
| 81 |
+
0.47796326875686646,
|
| 82 |
+
0.0,
|
| 83 |
+
0.0,
|
| 84 |
+
0.0,
|
| 85 |
+
0.47721168398857117
|
| 86 |
+
]
|
| 87 |
+
},
|
| 88 |
+
"num_trajectories": 50,
|
| 89 |
+
"num_transitions": 34112,
|
| 90 |
+
"proprio": {
|
| 91 |
+
"max": [
|
| 92 |
+
0.0,
|
| 93 |
+
0.0,
|
| 94 |
+
0.0,
|
| 95 |
+
0.0,
|
| 96 |
+
0.0,
|
| 97 |
+
0.0,
|
| 98 |
+
0.0
|
| 99 |
+
],
|
| 100 |
+
"mean": [
|
| 101 |
+
0.0,
|
| 102 |
+
0.0,
|
| 103 |
+
0.0,
|
| 104 |
+
0.0,
|
| 105 |
+
0.0,
|
| 106 |
+
0.0,
|
| 107 |
+
0.0
|
| 108 |
+
],
|
| 109 |
+
"min": [
|
| 110 |
+
0.0,
|
| 111 |
+
0.0,
|
| 112 |
+
0.0,
|
| 113 |
+
0.0,
|
| 114 |
+
0.0,
|
| 115 |
+
0.0,
|
| 116 |
+
0.0
|
| 117 |
+
],
|
| 118 |
+
"q01": [
|
| 119 |
+
0.0,
|
| 120 |
+
0.0,
|
| 121 |
+
0.0,
|
| 122 |
+
0.0,
|
| 123 |
+
0.0,
|
| 124 |
+
0.0,
|
| 125 |
+
0.0
|
| 126 |
+
],
|
| 127 |
+
"q99": [
|
| 128 |
+
0.0,
|
| 129 |
+
0.0,
|
| 130 |
+
0.0,
|
| 131 |
+
0.0,
|
| 132 |
+
0.0,
|
| 133 |
+
0.0,
|
| 134 |
+
0.0
|
| 135 |
+
],
|
| 136 |
+
"std": [
|
| 137 |
+
0.0,
|
| 138 |
+
0.0,
|
| 139 |
+
0.0,
|
| 140 |
+
0.0,
|
| 141 |
+
0.0,
|
| 142 |
+
0.0,
|
| 143 |
+
0.0
|
| 144 |
+
]
|
| 145 |
+
}
|
| 146 |
+
},
|
| 147 |
+
"austin_sailor_dataset_converted_externally_to_rlds": {
|
| 148 |
+
"action": {
|
| 149 |
+
"mask": [
|
| 150 |
+
true,
|
| 151 |
+
true,
|
| 152 |
+
true,
|
| 153 |
+
true,
|
| 154 |
+
true,
|
| 155 |
+
true,
|
| 156 |
+
false
|
| 157 |
+
],
|
| 158 |
+
"max": [
|
| 159 |
+
1.0,
|
| 160 |
+
1.0,
|
| 161 |
+
1.0,
|
| 162 |
+
0.0,
|
| 163 |
+
0.0,
|
| 164 |
+
0.375,
|
| 165 |
+
1.0
|
| 166 |
+
],
|
| 167 |
+
"mean": [
|
| 168 |
+
0.011825348250567913,
|
| 169 |
+
0.006461074110120535,
|
| 170 |
+
0.06023626774549484,
|
| 171 |
+
0.0,
|
| 172 |
+
0.0,
|
| 173 |
+
0.0016465914668515325,
|
| 174 |
+
0.5260950326919556
|
| 175 |
+
],
|
| 176 |
+
"min": [
|
| 177 |
+
-1.0,
|
| 178 |
+
-1.0,
|
| 179 |
+
-1.0,
|
| 180 |
+
0.0,
|
| 181 |
+
0.0,
|
| 182 |
+
-0.375,
|
| 183 |
+
0.0
|
| 184 |
+
],
|
| 185 |
+
"q01": [
|
| 186 |
+
-1.0,
|
| 187 |
+
-0.9828571677207947,
|
| 188 |
+
-0.6000000238418579,
|
| 189 |
+
0.0,
|
| 190 |
+
0.0,
|
| 191 |
+
-0.17249999940395355,
|
| 192 |
+
0.0
|
| 193 |
+
],
|
| 194 |
+
"q99": [
|
| 195 |
+
1.0,
|
| 196 |
+
0.9457142949104309,
|
| 197 |
+
1.0,
|
| 198 |
+
0.0,
|
| 199 |
+
0.0,
|
| 200 |
+
0.17892856895923615,
|
| 201 |
+
1.0
|
| 202 |
+
],
|
| 203 |
+
"std": [
|
| 204 |
+
0.46348899602890015,
|
| 205 |
+
0.41240179538726807,
|
| 206 |
+
0.411862850189209,
|
| 207 |
+
0.0,
|
| 208 |
+
0.0,
|
| 209 |
+
0.0578610822558403,
|
| 210 |
+
0.49894046783447266
|
| 211 |
+
]
|
| 212 |
+
},
|
| 213 |
+
"num_trajectories": 240,
|
| 214 |
+
"num_transitions": 353094,
|
| 215 |
+
"proprio": {
|
| 216 |
+
"max": [
|
| 217 |
+
0.0,
|
| 218 |
+
0.0,
|
| 219 |
+
0.0,
|
| 220 |
+
0.0,
|
| 221 |
+
0.0,
|
| 222 |
+
0.0,
|
| 223 |
+
0.0
|
| 224 |
+
],
|
| 225 |
+
"mean": [
|
| 226 |
+
0.0,
|
| 227 |
+
0.0,
|
| 228 |
+
0.0,
|
| 229 |
+
0.0,
|
| 230 |
+
0.0,
|
| 231 |
+
0.0,
|
| 232 |
+
0.0
|
| 233 |
+
],
|
| 234 |
+
"min": [
|
| 235 |
+
0.0,
|
| 236 |
+
0.0,
|
| 237 |
+
0.0,
|
| 238 |
+
0.0,
|
| 239 |
+
0.0,
|
| 240 |
+
0.0,
|
| 241 |
+
0.0
|
| 242 |
+
],
|
| 243 |
+
"q01": [
|
| 244 |
+
0.0,
|
| 245 |
+
0.0,
|
| 246 |
+
0.0,
|
| 247 |
+
0.0,
|
| 248 |
+
0.0,
|
| 249 |
+
0.0,
|
| 250 |
+
0.0
|
| 251 |
+
],
|
| 252 |
+
"q99": [
|
| 253 |
+
0.0,
|
| 254 |
+
0.0,
|
| 255 |
+
0.0,
|
| 256 |
+
0.0,
|
| 257 |
+
0.0,
|
| 258 |
+
0.0,
|
| 259 |
+
0.0
|
| 260 |
+
],
|
| 261 |
+
"std": [
|
| 262 |
+
0.0,
|
| 263 |
+
0.0,
|
| 264 |
+
0.0,
|
| 265 |
+
0.0,
|
| 266 |
+
0.0,
|
| 267 |
+
0.0,
|
| 268 |
+
0.0
|
| 269 |
+
]
|
| 270 |
+
}
|
| 271 |
+
},
|
| 272 |
+
"austin_sirius_dataset_converted_externally_to_rlds": {
|
| 273 |
+
"action": {
|
| 274 |
+
"mask": [
|
| 275 |
+
true,
|
| 276 |
+
true,
|
| 277 |
+
true,
|
| 278 |
+
true,
|
| 279 |
+
true,
|
| 280 |
+
true,
|
| 281 |
+
false
|
| 282 |
+
],
|
| 283 |
+
"max": [
|
| 284 |
+
1.0002285242080688,
|
| 285 |
+
0.960608720779419,
|
| 286 |
+
1.105179786682129,
|
| 287 |
+
0.0,
|
| 288 |
+
0.0,
|
| 289 |
+
0.341785728931427,
|
| 290 |
+
1.0
|
| 291 |
+
],
|
| 292 |
+
"mean": [
|
| 293 |
+
0.07747682929039001,
|
| 294 |
+
0.03195561468601227,
|
| 295 |
+
0.04244732856750488,
|
| 296 |
+
0.0,
|
| 297 |
+
0.0,
|
| 298 |
+
-0.01603456400334835,
|
| 299 |
+
0.43260177969932556
|
| 300 |
+
],
|
| 301 |
+
"min": [
|
| 302 |
+
-1.0183025598526,
|
| 303 |
+
-0.9800000190734863,
|
| 304 |
+
-0.9774575233459473,
|
| 305 |
+
0.0,
|
| 306 |
+
0.0,
|
| 307 |
+
-0.34607142210006714,
|
| 308 |
+
0.0
|
| 309 |
+
],
|
| 310 |
+
"q01": [
|
| 311 |
+
-0.780905865430832,
|
| 312 |
+
-0.5667179036140442,
|
| 313 |
+
-0.5254343223571777,
|
| 314 |
+
0.0,
|
| 315 |
+
0.0,
|
| 316 |
+
-0.28495091378688814,
|
| 317 |
+
0.0
|
| 318 |
+
],
|
| 319 |
+
"q99": [
|
| 320 |
+
0.9569637751579284,
|
| 321 |
+
0.6971374487876891,
|
| 322 |
+
0.8124888157844541,
|
| 323 |
+
0.0,
|
| 324 |
+
0.0,
|
| 325 |
+
0.1971428543329239,
|
| 326 |
+
1.0
|
| 327 |
+
],
|
| 328 |
+
"std": [
|
| 329 |
+
0.3906329572200775,
|
| 330 |
+
0.2998155355453491,
|
| 331 |
+
0.2782271206378937,
|
| 332 |
+
0.0,
|
| 333 |
+
0.0,
|
| 334 |
+
0.08120622485876083,
|
| 335 |
+
0.49528297781944275
|
| 336 |
+
]
|
| 337 |
+
},
|
| 338 |
+
"num_trajectories": 559,
|
| 339 |
+
"num_transitions": 279939,
|
| 340 |
+
"proprio": {
|
| 341 |
+
"max": [
|
| 342 |
+
0.0,
|
| 343 |
+
0.0,
|
| 344 |
+
0.0,
|
| 345 |
+
0.0,
|
| 346 |
+
0.0,
|
| 347 |
+
0.0,
|
| 348 |
+
0.0
|
| 349 |
+
],
|
| 350 |
+
"mean": [
|
| 351 |
+
0.0,
|
| 352 |
+
0.0,
|
| 353 |
+
0.0,
|
| 354 |
+
0.0,
|
| 355 |
+
0.0,
|
| 356 |
+
0.0,
|
| 357 |
+
0.0
|
| 358 |
+
],
|
| 359 |
+
"min": [
|
| 360 |
+
0.0,
|
| 361 |
+
0.0,
|
| 362 |
+
0.0,
|
| 363 |
+
0.0,
|
| 364 |
+
0.0,
|
| 365 |
+
0.0,
|
| 366 |
+
0.0
|
| 367 |
+
],
|
| 368 |
+
"q01": [
|
| 369 |
+
0.0,
|
| 370 |
+
0.0,
|
| 371 |
+
0.0,
|
| 372 |
+
0.0,
|
| 373 |
+
0.0,
|
| 374 |
+
0.0,
|
| 375 |
+
0.0
|
| 376 |
+
],
|
| 377 |
+
"q99": [
|
| 378 |
+
0.0,
|
| 379 |
+
0.0,
|
| 380 |
+
0.0,
|
| 381 |
+
0.0,
|
| 382 |
+
0.0,
|
| 383 |
+
0.0,
|
| 384 |
+
0.0
|
| 385 |
+
],
|
| 386 |
+
"std": [
|
| 387 |
+
0.0,
|
| 388 |
+
0.0,
|
| 389 |
+
0.0,
|
| 390 |
+
0.0,
|
| 391 |
+
0.0,
|
| 392 |
+
0.0,
|
| 393 |
+
0.0
|
| 394 |
+
]
|
| 395 |
+
}
|
| 396 |
+
},
|
| 397 |
+
"bc_z": {
|
| 398 |
+
"action": {
|
| 399 |
+
"mask": [
|
| 400 |
+
true,
|
| 401 |
+
true,
|
| 402 |
+
true,
|
| 403 |
+
true,
|
| 404 |
+
true,
|
| 405 |
+
true,
|
| 406 |
+
false
|
| 407 |
+
],
|
| 408 |
+
"max": [
|
| 409 |
+
0.2165454924106598,
|
| 410 |
+
0.1251407265663147,
|
| 411 |
+
0.10772687941789627,
|
| 412 |
+
0.33544227480888367,
|
| 413 |
+
0.28117990493774414,
|
| 414 |
+
0.40614867210388184,
|
| 415 |
+
1.0
|
| 416 |
+
],
|
| 417 |
+
"mean": [
|
| 418 |
+
-0.009958467446267605,
|
| 419 |
+
0.0008958321413956583,
|
| 420 |
+
0.004995597992092371,
|
| 421 |
+
0.00029755113064311445,
|
| 422 |
+
-0.008735382929444313,
|
| 423 |
+
-0.030693737789988518,
|
| 424 |
+
0.8344562649726868
|
| 425 |
+
],
|
| 426 |
+
"min": [
|
| 427 |
+
-0.1677047461271286,
|
| 428 |
+
-0.14630407094955444,
|
| 429 |
+
-0.10066790133714676,
|
| 430 |
+
-0.29421567916870117,
|
| 431 |
+
-0.32101404666900635,
|
| 432 |
+
-0.4635624885559082,
|
| 433 |
+
0.0
|
| 434 |
+
],
|
| 435 |
+
"q01": [
|
| 436 |
+
-0.09220654994249344,
|
| 437 |
+
-0.06456145539879798,
|
| 438 |
+
-0.049121275544166565,
|
| 439 |
+
-0.11594625547528267,
|
| 440 |
+
-0.14152548640966414,
|
| 441 |
+
-0.2251061636209488,
|
| 442 |
+
0.0
|
| 443 |
+
],
|
| 444 |
+
"q99": [
|
| 445 |
+
0.07628866866230968,
|
| 446 |
+
0.058019736707210584,
|
| 447 |
+
0.052540797740221024,
|
| 448 |
+
0.11740604028105736,
|
| 449 |
+
0.11703975558280955,
|
| 450 |
+
0.16729306846857078,
|
| 451 |
+
1.0
|
| 452 |
+
],
|
| 453 |
+
"std": [
|
| 454 |
+
0.03053455986082554,
|
| 455 |
+
0.0231423731893301,
|
| 456 |
+
0.020641816779971123,
|
| 457 |
+
0.04155943542718887,
|
| 458 |
+
0.046427831053733826,
|
| 459 |
+
0.0769818127155304,
|
| 460 |
+
0.3610210120677948
|
| 461 |
+
]
|
| 462 |
+
},
|
| 463 |
+
"num_trajectories": 43264,
|
| 464 |
+
"num_transitions": 6015535,
|
| 465 |
+
"proprio": {
|
| 466 |
+
"max": [
|
| 467 |
+
0.0,
|
| 468 |
+
0.0,
|
| 469 |
+
0.0,
|
| 470 |
+
0.0,
|
| 471 |
+
0.0,
|
| 472 |
+
0.0,
|
| 473 |
+
0.0
|
| 474 |
+
],
|
| 475 |
+
"mean": [
|
| 476 |
+
0.0,
|
| 477 |
+
0.0,
|
| 478 |
+
0.0,
|
| 479 |
+
0.0,
|
| 480 |
+
0.0,
|
| 481 |
+
0.0,
|
| 482 |
+
0.0
|
| 483 |
+
],
|
| 484 |
+
"min": [
|
| 485 |
+
0.0,
|
| 486 |
+
0.0,
|
| 487 |
+
0.0,
|
| 488 |
+
0.0,
|
| 489 |
+
0.0,
|
| 490 |
+
0.0,
|
| 491 |
+
0.0
|
| 492 |
+
],
|
| 493 |
+
"q01": [
|
| 494 |
+
0.0,
|
| 495 |
+
0.0,
|
| 496 |
+
0.0,
|
| 497 |
+
0.0,
|
| 498 |
+
0.0,
|
| 499 |
+
0.0,
|
| 500 |
+
0.0
|
| 501 |
+
],
|
| 502 |
+
"q99": [
|
| 503 |
+
0.0,
|
| 504 |
+
0.0,
|
| 505 |
+
0.0,
|
| 506 |
+
0.0,
|
| 507 |
+
0.0,
|
| 508 |
+
0.0,
|
| 509 |
+
0.0
|
| 510 |
+
],
|
| 511 |
+
"std": [
|
| 512 |
+
0.0,
|
| 513 |
+
0.0,
|
| 514 |
+
0.0,
|
| 515 |
+
0.0,
|
| 516 |
+
0.0,
|
| 517 |
+
0.0,
|
| 518 |
+
0.0
|
| 519 |
+
]
|
| 520 |
+
}
|
| 521 |
+
},
|
| 522 |
+
"berkeley_autolab_ur5": {
|
| 523 |
+
"action": {
|
| 524 |
+
"mask": [
|
| 525 |
+
true,
|
| 526 |
+
true,
|
| 527 |
+
true,
|
| 528 |
+
true,
|
| 529 |
+
true,
|
| 530 |
+
true,
|
| 531 |
+
false
|
| 532 |
+
],
|
| 533 |
+
"max": [
|
| 534 |
+
0.019999999552965164,
|
| 535 |
+
0.019999999552965164,
|
| 536 |
+
0.019999999552965164,
|
| 537 |
+
0.06666667014360428,
|
| 538 |
+
0.06666667014360428,
|
| 539 |
+
0.06666667014360428,
|
| 540 |
+
1.0
|
| 541 |
+
],
|
| 542 |
+
"mean": [
|
| 543 |
+
0.0005683620693162084,
|
| 544 |
+
0.001217700308188796,
|
| 545 |
+
-0.0005296372692100704,
|
| 546 |
+
0.00021029810886830091,
|
| 547 |
+
6.0695128922816366e-05,
|
| 548 |
+
0.001204986940138042,
|
| 549 |
+
0.6298308372497559
|
| 550 |
+
],
|
| 551 |
+
"min": [
|
| 552 |
+
-0.019999999552965164,
|
| 553 |
+
-0.019999999552965164,
|
| 554 |
+
-0.019999999552965164,
|
| 555 |
+
-0.06666667014360428,
|
| 556 |
+
-0.06666667014360428,
|
| 557 |
+
-0.06666667014360428,
|
| 558 |
+
0.0
|
| 559 |
+
],
|
| 560 |
+
"q01": [
|
| 561 |
+
-0.019999999552965164,
|
| 562 |
+
-0.019999999552965164,
|
| 563 |
+
-0.019999999552965164,
|
| 564 |
+
-0.02628571353852749,
|
| 565 |
+
-0.06666667014360428,
|
| 566 |
+
-0.03847619146108627,
|
| 567 |
+
0.0
|
| 568 |
+
],
|
| 569 |
+
"q99": [
|
| 570 |
+
0.019999999552965164,
|
| 571 |
+
0.019999999552965164,
|
| 572 |
+
0.019999999552965164,
|
| 573 |
+
0.031809523701667786,
|
| 574 |
+
0.06666667014360428,
|
| 575 |
+
0.036571428179740906,
|
| 576 |
+
1.0
|
| 577 |
+
],
|
| 578 |
+
"std": [
|
| 579 |
+
0.0115329809486866,
|
| 580 |
+
0.007990492507815361,
|
| 581 |
+
0.009577835910022259,
|
| 582 |
+
0.009432995691895485,
|
| 583 |
+
0.016427582129836082,
|
| 584 |
+
0.011053967289626598,
|
| 585 |
+
0.48267969489097595
|
| 586 |
+
]
|
| 587 |
+
},
|
| 588 |
+
"num_trajectories": 1000,
|
| 589 |
+
"num_transitions": 97939,
|
| 590 |
+
"proprio": {
|
| 591 |
+
"max": [
|
| 592 |
+
0.0,
|
| 593 |
+
0.0,
|
| 594 |
+
0.0,
|
| 595 |
+
0.0,
|
| 596 |
+
0.0,
|
| 597 |
+
0.0,
|
| 598 |
+
0.0
|
| 599 |
+
],
|
| 600 |
+
"mean": [
|
| 601 |
+
0.0,
|
| 602 |
+
0.0,
|
| 603 |
+
0.0,
|
| 604 |
+
0.0,
|
| 605 |
+
0.0,
|
| 606 |
+
0.0,
|
| 607 |
+
0.0
|
| 608 |
+
],
|
| 609 |
+
"min": [
|
| 610 |
+
0.0,
|
| 611 |
+
0.0,
|
| 612 |
+
0.0,
|
| 613 |
+
0.0,
|
| 614 |
+
0.0,
|
| 615 |
+
0.0,
|
| 616 |
+
0.0
|
| 617 |
+
],
|
| 618 |
+
"q01": [
|
| 619 |
+
0.0,
|
| 620 |
+
0.0,
|
| 621 |
+
0.0,
|
| 622 |
+
0.0,
|
| 623 |
+
0.0,
|
| 624 |
+
0.0,
|
| 625 |
+
0.0
|
| 626 |
+
],
|
| 627 |
+
"q99": [
|
| 628 |
+
0.0,
|
| 629 |
+
0.0,
|
| 630 |
+
0.0,
|
| 631 |
+
0.0,
|
| 632 |
+
0.0,
|
| 633 |
+
0.0,
|
| 634 |
+
0.0
|
| 635 |
+
],
|
| 636 |
+
"std": [
|
| 637 |
+
0.0,
|
| 638 |
+
0.0,
|
| 639 |
+
0.0,
|
| 640 |
+
0.0,
|
| 641 |
+
0.0,
|
| 642 |
+
0.0,
|
| 643 |
+
0.0
|
| 644 |
+
]
|
| 645 |
+
}
|
| 646 |
+
},
|
| 647 |
+
"berkeley_cable_routing": {
|
| 648 |
+
"action": {
|
| 649 |
+
"mask": [
|
| 650 |
+
true,
|
| 651 |
+
true,
|
| 652 |
+
true,
|
| 653 |
+
true,
|
| 654 |
+
true,
|
| 655 |
+
true,
|
| 656 |
+
false
|
| 657 |
+
],
|
| 658 |
+
"max": [
|
| 659 |
+
0.9633283019065857,
|
| 660 |
+
1.0,
|
| 661 |
+
1.0,
|
| 662 |
+
0.0,
|
| 663 |
+
0.0,
|
| 664 |
+
1.0,
|
| 665 |
+
0.0
|
| 666 |
+
],
|
| 667 |
+
"mean": [
|
| 668 |
+
-0.07139874249696732,
|
| 669 |
+
0.023609008640050888,
|
| 670 |
+
0.10241943597793579,
|
| 671 |
+
0.0,
|
| 672 |
+
0.0,
|
| 673 |
+
0.049671024084091187,
|
| 674 |
+
0.0
|
| 675 |
+
],
|
| 676 |
+
"min": [
|
| 677 |
+
-0.9809081554412842,
|
| 678 |
+
-0.9554349184036255,
|
| 679 |
+
-0.9994775056838989,
|
| 680 |
+
0.0,
|
| 681 |
+
0.0,
|
| 682 |
+
-1.0,
|
| 683 |
+
0.0
|
| 684 |
+
],
|
| 685 |
+
"q01": [
|
| 686 |
+
-0.5534318816661835,
|
| 687 |
+
-0.4797285574674606,
|
| 688 |
+
-0.5314934802055359,
|
| 689 |
+
0.0,
|
| 690 |
+
0.0,
|
| 691 |
+
-0.8855219376087189,
|
| 692 |
+
0.0
|
| 693 |
+
],
|
| 694 |
+
"q99": [
|
| 695 |
+
0.42652835428714786,
|
| 696 |
+
0.5000944086909298,
|
| 697 |
+
0.639823433756829,
|
| 698 |
+
0.0,
|
| 699 |
+
0.0,
|
| 700 |
+
0.984243879914284,
|
| 701 |
+
0.0
|
| 702 |
+
],
|
| 703 |
+
"std": [
|
| 704 |
+
0.1815500408411026,
|
| 705 |
+
0.1810990273952484,
|
| 706 |
+
0.21220779418945312,
|
| 707 |
+
0.0,
|
| 708 |
+
0.0,
|
| 709 |
+
0.3475511968135834,
|
| 710 |
+
0.0
|
| 711 |
+
]
|
| 712 |
+
},
|
| 713 |
+
"num_trajectories": 1647,
|
| 714 |
+
"num_transitions": 42328,
|
| 715 |
+
"proprio": {
|
| 716 |
+
"max": [
|
| 717 |
+
0.0,
|
| 718 |
+
0.0,
|
| 719 |
+
0.0,
|
| 720 |
+
0.0,
|
| 721 |
+
0.0,
|
| 722 |
+
0.0,
|
| 723 |
+
0.0
|
| 724 |
+
],
|
| 725 |
+
"mean": [
|
| 726 |
+
0.0,
|
| 727 |
+
0.0,
|
| 728 |
+
0.0,
|
| 729 |
+
0.0,
|
| 730 |
+
0.0,
|
| 731 |
+
0.0,
|
| 732 |
+
0.0
|
| 733 |
+
],
|
| 734 |
+
"min": [
|
| 735 |
+
0.0,
|
| 736 |
+
0.0,
|
| 737 |
+
0.0,
|
| 738 |
+
0.0,
|
| 739 |
+
0.0,
|
| 740 |
+
0.0,
|
| 741 |
+
0.0
|
| 742 |
+
],
|
| 743 |
+
"q01": [
|
| 744 |
+
0.0,
|
| 745 |
+
0.0,
|
| 746 |
+
0.0,
|
| 747 |
+
0.0,
|
| 748 |
+
0.0,
|
| 749 |
+
0.0,
|
| 750 |
+
0.0
|
| 751 |
+
],
|
| 752 |
+
"q99": [
|
| 753 |
+
0.0,
|
| 754 |
+
0.0,
|
| 755 |
+
0.0,
|
| 756 |
+
0.0,
|
| 757 |
+
0.0,
|
| 758 |
+
0.0,
|
| 759 |
+
0.0
|
| 760 |
+
],
|
| 761 |
+
"std": [
|
| 762 |
+
0.0,
|
| 763 |
+
0.0,
|
| 764 |
+
0.0,
|
| 765 |
+
0.0,
|
| 766 |
+
0.0,
|
| 767 |
+
0.0,
|
| 768 |
+
0.0
|
| 769 |
+
]
|
| 770 |
+
}
|
| 771 |
+
},
|
| 772 |
+
"berkeley_fanuc_manipulation": {
|
| 773 |
+
"action": {
|
| 774 |
+
"mask": [
|
| 775 |
+
true,
|
| 776 |
+
true,
|
| 777 |
+
true,
|
| 778 |
+
true,
|
| 779 |
+
true,
|
| 780 |
+
true,
|
| 781 |
+
false
|
| 782 |
+
],
|
| 783 |
+
"max": [
|
| 784 |
+
0.009999999776482582,
|
| 785 |
+
0.009999999776482582,
|
| 786 |
+
0.009999999776482582,
|
| 787 |
+
0.03490658476948738,
|
| 788 |
+
0.03490658476948738,
|
| 789 |
+
0.03490658476948738,
|
| 790 |
+
1.0
|
| 791 |
+
],
|
| 792 |
+
"mean": [
|
| 793 |
+
0.0007744057802483439,
|
| 794 |
+
-0.00031240080716088414,
|
| 795 |
+
-0.0015001941937953234,
|
| 796 |
+
-0.0007515158504247665,
|
| 797 |
+
-0.00015832878125365824,
|
| 798 |
+
0.00014327642566058785,
|
| 799 |
+
0.699295699596405
|
| 800 |
+
],
|
| 801 |
+
"min": [
|
| 802 |
+
-0.009999999776482582,
|
| 803 |
+
-0.009999999776482582,
|
| 804 |
+
-0.009999999776482582,
|
| 805 |
+
-0.03490658476948738,
|
| 806 |
+
-0.03490658476948738,
|
| 807 |
+
-0.03490658476948738,
|
| 808 |
+
0.0
|
| 809 |
+
],
|
| 810 |
+
"q01": [
|
| 811 |
+
-0.009999999776482582,
|
| 812 |
+
-0.009999999776482582,
|
| 813 |
+
-0.009999999776482582,
|
| 814 |
+
-0.03490658476948738,
|
| 815 |
+
0.0,
|
| 816 |
+
-0.03490658476948738,
|
| 817 |
+
0.0
|
| 818 |
+
],
|
| 819 |
+
"q99": [
|
| 820 |
+
0.009999999776482582,
|
| 821 |
+
0.009999999776482582,
|
| 822 |
+
0.009999999776482582,
|
| 823 |
+
0.03490658476948738,
|
| 824 |
+
0.0,
|
| 825 |
+
0.03490658476948738,
|
| 826 |
+
1.0
|
| 827 |
+
],
|
| 828 |
+
"std": [
|
| 829 |
+
0.0034070091787725687,
|
| 830 |
+
0.0049921851605176926,
|
| 831 |
+
0.005344334989786148,
|
| 832 |
+
0.00759894959628582,
|
| 833 |
+
0.004081866703927517,
|
| 834 |
+
0.008568956516683102,
|
| 835 |
+
0.4586937427520752
|
| 836 |
+
]
|
| 837 |
+
},
|
| 838 |
+
"num_trajectories": 415,
|
| 839 |
+
"num_transitions": 62613,
|
| 840 |
+
"proprio": {
|
| 841 |
+
"max": [
|
| 842 |
+
0.0,
|
| 843 |
+
0.0,
|
| 844 |
+
0.0,
|
| 845 |
+
0.0,
|
| 846 |
+
0.0,
|
| 847 |
+
0.0,
|
| 848 |
+
0.0
|
| 849 |
+
],
|
| 850 |
+
"mean": [
|
| 851 |
+
0.0,
|
| 852 |
+
0.0,
|
| 853 |
+
0.0,
|
| 854 |
+
0.0,
|
| 855 |
+
0.0,
|
| 856 |
+
0.0,
|
| 857 |
+
0.0
|
| 858 |
+
],
|
| 859 |
+
"min": [
|
| 860 |
+
0.0,
|
| 861 |
+
0.0,
|
| 862 |
+
0.0,
|
| 863 |
+
0.0,
|
| 864 |
+
0.0,
|
| 865 |
+
0.0,
|
| 866 |
+
0.0
|
| 867 |
+
],
|
| 868 |
+
"q01": [
|
| 869 |
+
0.0,
|
| 870 |
+
0.0,
|
| 871 |
+
0.0,
|
| 872 |
+
0.0,
|
| 873 |
+
0.0,
|
| 874 |
+
0.0,
|
| 875 |
+
0.0
|
| 876 |
+
],
|
| 877 |
+
"q99": [
|
| 878 |
+
0.0,
|
| 879 |
+
0.0,
|
| 880 |
+
0.0,
|
| 881 |
+
0.0,
|
| 882 |
+
0.0,
|
| 883 |
+
0.0,
|
| 884 |
+
0.0
|
| 885 |
+
],
|
| 886 |
+
"std": [
|
| 887 |
+
0.0,
|
| 888 |
+
0.0,
|
| 889 |
+
0.0,
|
| 890 |
+
0.0,
|
| 891 |
+
0.0,
|
| 892 |
+
0.0,
|
| 893 |
+
0.0
|
| 894 |
+
]
|
| 895 |
+
}
|
| 896 |
+
},
|
| 897 |
+
"bridge_orig": {
|
| 898 |
+
"action": {
|
| 899 |
+
"mask": [
|
| 900 |
+
true,
|
| 901 |
+
true,
|
| 902 |
+
true,
|
| 903 |
+
true,
|
| 904 |
+
true,
|
| 905 |
+
true,
|
| 906 |
+
false
|
| 907 |
+
],
|
| 908 |
+
"max": [
|
| 909 |
+
0.41691166162490845,
|
| 910 |
+
0.25864794850349426,
|
| 911 |
+
0.21218234300613403,
|
| 912 |
+
3.122201919555664,
|
| 913 |
+
1.8618112802505493,
|
| 914 |
+
6.280478477478027,
|
| 915 |
+
1.0
|
| 916 |
+
],
|
| 917 |
+
"mean": [
|
| 918 |
+
0.0002334194869035855,
|
| 919 |
+
0.00013004911306779832,
|
| 920 |
+
-0.00012762474943883717,
|
| 921 |
+
-0.0001556558854645118,
|
| 922 |
+
-0.0004039328487124294,
|
| 923 |
+
0.00023557482927571982,
|
| 924 |
+
0.5764579176902771
|
| 925 |
+
],
|
| 926 |
+
"min": [
|
| 927 |
+
-0.4007510244846344,
|
| 928 |
+
-0.13874775171279907,
|
| 929 |
+
-0.22553899884223938,
|
| 930 |
+
-3.2010786533355713,
|
| 931 |
+
-1.8618112802505493,
|
| 932 |
+
-6.279075622558594,
|
| 933 |
+
0.0
|
| 934 |
+
],
|
| 935 |
+
"q01": [
|
| 936 |
+
-0.02872725307941437,
|
| 937 |
+
-0.04170349963009357,
|
| 938 |
+
-0.026093858778476715,
|
| 939 |
+
-0.08092105075716972,
|
| 940 |
+
-0.09288699507713317,
|
| 941 |
+
-0.20718276381492615,
|
| 942 |
+
0.0
|
| 943 |
+
],
|
| 944 |
+
"q99": [
|
| 945 |
+
0.028309678435325586,
|
| 946 |
+
0.040855254605412394,
|
| 947 |
+
0.040161586627364146,
|
| 948 |
+
0.08192047759890528,
|
| 949 |
+
0.07792850524187081,
|
| 950 |
+
0.20382574498653397,
|
| 951 |
+
1.0
|
| 952 |
+
],
|
| 953 |
+
"std": [
|
| 954 |
+
0.009765930473804474,
|
| 955 |
+
0.013689135201275349,
|
| 956 |
+
0.012667362578213215,
|
| 957 |
+
0.028534092009067535,
|
| 958 |
+
0.030637972056865692,
|
| 959 |
+
0.07691419124603271,
|
| 960 |
+
0.4973701536655426
|
| 961 |
+
]
|
| 962 |
+
},
|
| 963 |
+
"num_trajectories": 60064,
|
| 964 |
+
"num_transitions": 2135463,
|
| 965 |
+
"proprio": {
|
| 966 |
+
"max": [
|
| 967 |
+
0.0,
|
| 968 |
+
0.0,
|
| 969 |
+
0.0,
|
| 970 |
+
0.0,
|
| 971 |
+
0.0,
|
| 972 |
+
0.0,
|
| 973 |
+
0.0
|
| 974 |
+
],
|
| 975 |
+
"mean": [
|
| 976 |
+
0.0,
|
| 977 |
+
0.0,
|
| 978 |
+
0.0,
|
| 979 |
+
0.0,
|
| 980 |
+
0.0,
|
| 981 |
+
0.0,
|
| 982 |
+
0.0
|
| 983 |
+
],
|
| 984 |
+
"min": [
|
| 985 |
+
0.0,
|
| 986 |
+
0.0,
|
| 987 |
+
0.0,
|
| 988 |
+
0.0,
|
| 989 |
+
0.0,
|
| 990 |
+
0.0,
|
| 991 |
+
0.0
|
| 992 |
+
],
|
| 993 |
+
"q01": [
|
| 994 |
+
0.0,
|
| 995 |
+
0.0,
|
| 996 |
+
0.0,
|
| 997 |
+
0.0,
|
| 998 |
+
0.0,
|
| 999 |
+
0.0,
|
| 1000 |
+
0.0
|
| 1001 |
+
],
|
| 1002 |
+
"q99": [
|
| 1003 |
+
0.0,
|
| 1004 |
+
0.0,
|
| 1005 |
+
0.0,
|
| 1006 |
+
0.0,
|
| 1007 |
+
0.0,
|
| 1008 |
+
0.0,
|
| 1009 |
+
0.0
|
| 1010 |
+
],
|
| 1011 |
+
"std": [
|
| 1012 |
+
0.0,
|
| 1013 |
+
0.0,
|
| 1014 |
+
0.0,
|
| 1015 |
+
0.0,
|
| 1016 |
+
0.0,
|
| 1017 |
+
0.0,
|
| 1018 |
+
0.0
|
| 1019 |
+
]
|
| 1020 |
+
}
|
| 1021 |
+
},
|
| 1022 |
+
"cmu_stretch": {
|
| 1023 |
+
"action": {
|
| 1024 |
+
"mask": [
|
| 1025 |
+
true,
|
| 1026 |
+
true,
|
| 1027 |
+
true,
|
| 1028 |
+
true,
|
| 1029 |
+
true,
|
| 1030 |
+
true,
|
| 1031 |
+
false
|
| 1032 |
+
],
|
| 1033 |
+
"max": [
|
| 1034 |
+
0.02338407188653946,
|
| 1035 |
+
0.0,
|
| 1036 |
+
0.023404927924275398,
|
| 1037 |
+
0.0,
|
| 1038 |
+
0.0,
|
| 1039 |
+
0.0,
|
| 1040 |
+
1.0
|
| 1041 |
+
],
|
| 1042 |
+
"mean": [
|
| 1043 |
+
0.00036304505192674696,
|
| 1044 |
+
0.0,
|
| 1045 |
+
0.0016466958913952112,
|
| 1046 |
+
0.0,
|
| 1047 |
+
0.0,
|
| 1048 |
+
0.0,
|
| 1049 |
+
0.3987048268318176
|
| 1050 |
+
],
|
| 1051 |
+
"min": [
|
| 1052 |
+
-0.019353797659277916,
|
| 1053 |
+
0.0,
|
| 1054 |
+
-0.02019215188920498,
|
| 1055 |
+
0.0,
|
| 1056 |
+
0.0,
|
| 1057 |
+
0.0,
|
| 1058 |
+
0.0
|
| 1059 |
+
],
|
| 1060 |
+
"q01": [
|
| 1061 |
+
-0.011175686959177256,
|
| 1062 |
+
0.0,
|
| 1063 |
+
-0.0032206363626755773,
|
| 1064 |
+
0.0,
|
| 1065 |
+
0.0,
|
| 1066 |
+
0.0,
|
| 1067 |
+
0.0
|
| 1068 |
+
],
|
| 1069 |
+
"q99": [
|
| 1070 |
+
0.014501785952597848,
|
| 1071 |
+
0.0,
|
| 1072 |
+
0.015056106168776728,
|
| 1073 |
+
0.0,
|
| 1074 |
+
0.0,
|
| 1075 |
+
0.0,
|
| 1076 |
+
1.0
|
| 1077 |
+
],
|
| 1078 |
+
"std": [
|
| 1079 |
+
0.004081828519701958,
|
| 1080 |
+
0.0,
|
| 1081 |
+
0.0037743328139185905,
|
| 1082 |
+
0.0,
|
| 1083 |
+
0.0,
|
| 1084 |
+
0.0,
|
| 1085 |
+
0.48963725566864014
|
| 1086 |
+
]
|
| 1087 |
+
},
|
| 1088 |
+
"num_trajectories": 135,
|
| 1089 |
+
"num_transitions": 25016,
|
| 1090 |
+
"proprio": {
|
| 1091 |
+
"max": [
|
| 1092 |
+
0.0,
|
| 1093 |
+
0.0,
|
| 1094 |
+
0.0,
|
| 1095 |
+
0.0,
|
| 1096 |
+
0.0,
|
| 1097 |
+
0.0,
|
| 1098 |
+
0.0
|
| 1099 |
+
],
|
| 1100 |
+
"mean": [
|
| 1101 |
+
0.0,
|
| 1102 |
+
0.0,
|
| 1103 |
+
0.0,
|
| 1104 |
+
0.0,
|
| 1105 |
+
0.0,
|
| 1106 |
+
0.0,
|
| 1107 |
+
0.0
|
| 1108 |
+
],
|
| 1109 |
+
"min": [
|
| 1110 |
+
0.0,
|
| 1111 |
+
0.0,
|
| 1112 |
+
0.0,
|
| 1113 |
+
0.0,
|
| 1114 |
+
0.0,
|
| 1115 |
+
0.0,
|
| 1116 |
+
0.0
|
| 1117 |
+
],
|
| 1118 |
+
"q01": [
|
| 1119 |
+
0.0,
|
| 1120 |
+
0.0,
|
| 1121 |
+
0.0,
|
| 1122 |
+
0.0,
|
| 1123 |
+
0.0,
|
| 1124 |
+
0.0,
|
| 1125 |
+
0.0
|
| 1126 |
+
],
|
| 1127 |
+
"q99": [
|
| 1128 |
+
0.0,
|
| 1129 |
+
0.0,
|
| 1130 |
+
0.0,
|
| 1131 |
+
0.0,
|
| 1132 |
+
0.0,
|
| 1133 |
+
0.0,
|
| 1134 |
+
0.0
|
| 1135 |
+
],
|
| 1136 |
+
"std": [
|
| 1137 |
+
0.0,
|
| 1138 |
+
0.0,
|
| 1139 |
+
0.0,
|
| 1140 |
+
0.0,
|
| 1141 |
+
0.0,
|
| 1142 |
+
0.0,
|
| 1143 |
+
0.0
|
| 1144 |
+
]
|
| 1145 |
+
}
|
| 1146 |
+
},
|
| 1147 |
+
"dlr_edan_shared_control_converted_externally_to_rlds": {
|
| 1148 |
+
"action": {
|
| 1149 |
+
"mask": [
|
| 1150 |
+
true,
|
| 1151 |
+
true,
|
| 1152 |
+
true,
|
| 1153 |
+
true,
|
| 1154 |
+
true,
|
| 1155 |
+
true,
|
| 1156 |
+
false
|
| 1157 |
+
],
|
| 1158 |
+
"max": [
|
| 1159 |
+
0.18991442024707794,
|
| 1160 |
+
0.0739002525806427,
|
| 1161 |
+
0.18064819276332855,
|
| 1162 |
+
0.0866486132144928,
|
| 1163 |
+
0.13464981317520142,
|
| 1164 |
+
0.16910280287265778,
|
| 1165 |
+
1.0
|
| 1166 |
+
],
|
| 1167 |
+
"mean": [
|
| 1168 |
+
0.006647810339927673,
|
| 1169 |
+
-0.0007657372043468058,
|
| 1170 |
+
0.006522852927446365,
|
| 1171 |
+
0.0011679717572405934,
|
| 1172 |
+
-0.006395625416189432,
|
| 1173 |
+
-0.011902998201549053,
|
| 1174 |
+
0.6985887289047241
|
| 1175 |
+
],
|
| 1176 |
+
"min": [
|
| 1177 |
+
-0.10054297000169754,
|
| 1178 |
+
-0.08427435159683228,
|
| 1179 |
+
-0.13533438742160797,
|
| 1180 |
+
-0.17556548118591309,
|
| 1181 |
+
-0.18485672771930695,
|
| 1182 |
+
-0.2680685818195343,
|
| 1183 |
+
0.0
|
| 1184 |
+
],
|
| 1185 |
+
"q01": [
|
| 1186 |
+
-0.02987122368067503,
|
| 1187 |
+
-0.06013262912631035,
|
| 1188 |
+
-0.08286409199237824,
|
| 1189 |
+
-0.05924444157630205,
|
| 1190 |
+
-0.15986866518855095,
|
| 1191 |
+
-0.15636983573436739,
|
| 1192 |
+
0.0
|
| 1193 |
+
],
|
| 1194 |
+
"q99": [
|
| 1195 |
+
0.08832092039287087,
|
| 1196 |
+
0.042126184627413736,
|
| 1197 |
+
0.11311905644834042,
|
| 1198 |
+
0.0643695573508739,
|
| 1199 |
+
0.03941855944693088,
|
| 1200 |
+
0.156646853685379,
|
| 1201 |
+
1.0
|
| 1202 |
+
],
|
| 1203 |
+
"std": [
|
| 1204 |
+
0.021393608301877975,
|
| 1205 |
+
0.01814231649041176,
|
| 1206 |
+
0.03374375030398369,
|
| 1207 |
+
0.01743541844189167,
|
| 1208 |
+
0.03394376486539841,
|
| 1209 |
+
0.04641875624656677,
|
| 1210 |
+
0.4588589072227478
|
| 1211 |
+
]
|
| 1212 |
+
},
|
| 1213 |
+
"num_trajectories": 104,
|
| 1214 |
+
"num_transitions": 8928,
|
| 1215 |
+
"proprio": {
|
| 1216 |
+
"max": [
|
| 1217 |
+
0.0,
|
| 1218 |
+
0.0,
|
| 1219 |
+
0.0,
|
| 1220 |
+
0.0,
|
| 1221 |
+
0.0,
|
| 1222 |
+
0.0,
|
| 1223 |
+
0.0
|
| 1224 |
+
],
|
| 1225 |
+
"mean": [
|
| 1226 |
+
0.0,
|
| 1227 |
+
0.0,
|
| 1228 |
+
0.0,
|
| 1229 |
+
0.0,
|
| 1230 |
+
0.0,
|
| 1231 |
+
0.0,
|
| 1232 |
+
0.0
|
| 1233 |
+
],
|
| 1234 |
+
"min": [
|
| 1235 |
+
0.0,
|
| 1236 |
+
0.0,
|
| 1237 |
+
0.0,
|
| 1238 |
+
0.0,
|
| 1239 |
+
0.0,
|
| 1240 |
+
0.0,
|
| 1241 |
+
0.0
|
| 1242 |
+
],
|
| 1243 |
+
"q01": [
|
| 1244 |
+
0.0,
|
| 1245 |
+
0.0,
|
| 1246 |
+
0.0,
|
| 1247 |
+
0.0,
|
| 1248 |
+
0.0,
|
| 1249 |
+
0.0,
|
| 1250 |
+
0.0
|
| 1251 |
+
],
|
| 1252 |
+
"q99": [
|
| 1253 |
+
0.0,
|
| 1254 |
+
0.0,
|
| 1255 |
+
0.0,
|
| 1256 |
+
0.0,
|
| 1257 |
+
0.0,
|
| 1258 |
+
0.0,
|
| 1259 |
+
0.0
|
| 1260 |
+
],
|
| 1261 |
+
"std": [
|
| 1262 |
+
0.0,
|
| 1263 |
+
0.0,
|
| 1264 |
+
0.0,
|
| 1265 |
+
0.0,
|
| 1266 |
+
0.0,
|
| 1267 |
+
0.0,
|
| 1268 |
+
0.0
|
| 1269 |
+
]
|
| 1270 |
+
}
|
| 1271 |
+
},
|
| 1272 |
+
"dobbe": {
|
| 1273 |
+
"action": {
|
| 1274 |
+
"mask": [
|
| 1275 |
+
true,
|
| 1276 |
+
true,
|
| 1277 |
+
true,
|
| 1278 |
+
true,
|
| 1279 |
+
true,
|
| 1280 |
+
true,
|
| 1281 |
+
false
|
| 1282 |
+
],
|
| 1283 |
+
"max": [
|
| 1284 |
+
38.590423583984375,
|
| 1285 |
+
17.932697296142578,
|
| 1286 |
+
4.843764305114746,
|
| 1287 |
+
1.4372116327285767,
|
| 1288 |
+
0.4340403974056244,
|
| 1289 |
+
1.2057193517684937,
|
| 1290 |
+
0.9998947381973267
|
| 1291 |
+
],
|
| 1292 |
+
"mean": [
|
| 1293 |
+
-0.0001120665911003016,
|
| 1294 |
+
0.0011229600058868527,
|
| 1295 |
+
-0.00010194431524723768,
|
| 1296 |
+
-7.371398532995954e-05,
|
| 1297 |
+
-0.00067531579406932,
|
| 1298 |
+
-5.6643435527803376e-05,
|
| 1299 |
+
0.6318281888961792
|
| 1300 |
+
],
|
| 1301 |
+
"min": [
|
| 1302 |
+
-5.700923442840576,
|
| 1303 |
+
-21.605947494506836,
|
| 1304 |
+
-123.72489929199219,
|
| 1305 |
+
-1.7229845523834229,
|
| 1306 |
+
-0.4998578727245331,
|
| 1307 |
+
-0.8867913484573364,
|
| 1308 |
+
1.4196479014572105e-06
|
| 1309 |
+
],
|
| 1310 |
+
"q01": [
|
| 1311 |
+
-0.01119564864784479,
|
| 1312 |
+
-0.014266146533191203,
|
| 1313 |
+
-0.0071747214533388615,
|
| 1314 |
+
-0.009444301575422287,
|
| 1315 |
+
-0.03990109823644161,
|
| 1316 |
+
-0.017422311007976532,
|
| 1317 |
+
4.003279136668425e-05
|
| 1318 |
+
],
|
| 1319 |
+
"q99": [
|
| 1320 |
+
0.01015154086053368,
|
| 1321 |
+
0.017181577533483497,
|
| 1322 |
+
0.007216989761218411,
|
| 1323 |
+
0.010380979906767595,
|
| 1324 |
+
0.03556173853576176,
|
| 1325 |
+
0.018032474815845446,
|
| 1326 |
+
0.9982578039169312
|
| 1327 |
+
],
|
| 1328 |
+
"std": [
|
| 1329 |
+
0.04264938458800316,
|
| 1330 |
+
0.04428559169173241,
|
| 1331 |
+
0.12224084138870239,
|
| 1332 |
+
0.005388413090258837,
|
| 1333 |
+
0.011246449314057827,
|
| 1334 |
+
0.006287882570177317,
|
| 1335 |
+
0.39732322096824646
|
| 1336 |
+
]
|
| 1337 |
+
},
|
| 1338 |
+
"num_trajectories": 5208,
|
| 1339 |
+
"num_transitions": 1139911,
|
| 1340 |
+
"proprio": {
|
| 1341 |
+
"max": [
|
| 1342 |
+
0.0,
|
| 1343 |
+
0.0,
|
| 1344 |
+
0.0,
|
| 1345 |
+
0.0,
|
| 1346 |
+
0.0,
|
| 1347 |
+
0.0,
|
| 1348 |
+
0.0
|
| 1349 |
+
],
|
| 1350 |
+
"mean": [
|
| 1351 |
+
0.0,
|
| 1352 |
+
0.0,
|
| 1353 |
+
0.0,
|
| 1354 |
+
0.0,
|
| 1355 |
+
0.0,
|
| 1356 |
+
0.0,
|
| 1357 |
+
0.0
|
| 1358 |
+
],
|
| 1359 |
+
"min": [
|
| 1360 |
+
0.0,
|
| 1361 |
+
0.0,
|
| 1362 |
+
0.0,
|
| 1363 |
+
0.0,
|
| 1364 |
+
0.0,
|
| 1365 |
+
0.0,
|
| 1366 |
+
0.0
|
| 1367 |
+
],
|
| 1368 |
+
"q01": [
|
| 1369 |
+
0.0,
|
| 1370 |
+
0.0,
|
| 1371 |
+
0.0,
|
| 1372 |
+
0.0,
|
| 1373 |
+
0.0,
|
| 1374 |
+
0.0,
|
| 1375 |
+
0.0
|
| 1376 |
+
],
|
| 1377 |
+
"q99": [
|
| 1378 |
+
0.0,
|
| 1379 |
+
0.0,
|
| 1380 |
+
0.0,
|
| 1381 |
+
0.0,
|
| 1382 |
+
0.0,
|
| 1383 |
+
0.0,
|
| 1384 |
+
0.0
|
| 1385 |
+
],
|
| 1386 |
+
"std": [
|
| 1387 |
+
0.0,
|
| 1388 |
+
0.0,
|
| 1389 |
+
0.0,
|
| 1390 |
+
0.0,
|
| 1391 |
+
0.0,
|
| 1392 |
+
0.0,
|
| 1393 |
+
0.0
|
| 1394 |
+
]
|
| 1395 |
+
}
|
| 1396 |
+
},
|
| 1397 |
+
"fmb_dataset": {
|
| 1398 |
+
"action": {
|
| 1399 |
+
"mask": [
|
| 1400 |
+
true,
|
| 1401 |
+
true,
|
| 1402 |
+
true,
|
| 1403 |
+
true,
|
| 1404 |
+
true,
|
| 1405 |
+
true,
|
| 1406 |
+
false
|
| 1407 |
+
],
|
| 1408 |
+
"max": [
|
| 1409 |
+
1.399999976158142,
|
| 1410 |
+
1.0,
|
| 1411 |
+
1.399999976158142,
|
| 1412 |
+
1.0,
|
| 1413 |
+
1.0,
|
| 1414 |
+
1.0,
|
| 1415 |
+
1.0
|
| 1416 |
+
],
|
| 1417 |
+
"mean": [
|
| 1418 |
+
0.059029702097177505,
|
| 1419 |
+
-0.06476633995771408,
|
| 1420 |
+
-0.09787475317716599,
|
| 1421 |
+
0.004325388930737972,
|
| 1422 |
+
0.00028963794466108084,
|
| 1423 |
+
-0.04457257315516472,
|
| 1424 |
+
0.7336440086364746
|
| 1425 |
+
],
|
| 1426 |
+
"min": [
|
| 1427 |
+
-1.399999976158142,
|
| 1428 |
+
-1.399999976158142,
|
| 1429 |
+
-1.0,
|
| 1430 |
+
-1.0,
|
| 1431 |
+
-1.0,
|
| 1432 |
+
-1.0,
|
| 1433 |
+
0.0
|
| 1434 |
+
],
|
| 1435 |
+
"q01": [
|
| 1436 |
+
-0.8257142901420593,
|
| 1437 |
+
-1.399999976158142,
|
| 1438 |
+
-1.0,
|
| 1439 |
+
-1.0,
|
| 1440 |
+
-0.3028571307659149,
|
| 1441 |
+
-1.0,
|
| 1442 |
+
0.0
|
| 1443 |
+
],
|
| 1444 |
+
"q99": [
|
| 1445 |
+
1.0,
|
| 1446 |
+
0.5257142782211304,
|
| 1447 |
+
1.0,
|
| 1448 |
+
1.0,
|
| 1449 |
+
0.3400000035762787,
|
| 1450 |
+
1.0,
|
| 1451 |
+
1.0
|
| 1452 |
+
],
|
| 1453 |
+
"std": [
|
| 1454 |
+
0.28809213638305664,
|
| 1455 |
+
0.2820415794849396,
|
| 1456 |
+
0.4626740515232086,
|
| 1457 |
+
0.3266514539718628,
|
| 1458 |
+
0.10842999070882797,
|
| 1459 |
+
0.3440099358558655,
|
| 1460 |
+
0.4435282051563263
|
| 1461 |
+
]
|
| 1462 |
+
},
|
| 1463 |
+
"num_trajectories": 8612,
|
| 1464 |
+
"num_transitions": 1137459,
|
| 1465 |
+
"proprio": {
|
| 1466 |
+
"max": [
|
| 1467 |
+
0.0,
|
| 1468 |
+
0.0,
|
| 1469 |
+
0.0,
|
| 1470 |
+
0.0,
|
| 1471 |
+
0.0,
|
| 1472 |
+
0.0,
|
| 1473 |
+
0.0
|
| 1474 |
+
],
|
| 1475 |
+
"mean": [
|
| 1476 |
+
0.0,
|
| 1477 |
+
0.0,
|
| 1478 |
+
0.0,
|
| 1479 |
+
0.0,
|
| 1480 |
+
0.0,
|
| 1481 |
+
0.0,
|
| 1482 |
+
0.0
|
| 1483 |
+
],
|
| 1484 |
+
"min": [
|
| 1485 |
+
0.0,
|
| 1486 |
+
0.0,
|
| 1487 |
+
0.0,
|
| 1488 |
+
0.0,
|
| 1489 |
+
0.0,
|
| 1490 |
+
0.0,
|
| 1491 |
+
0.0
|
| 1492 |
+
],
|
| 1493 |
+
"q01": [
|
| 1494 |
+
0.0,
|
| 1495 |
+
0.0,
|
| 1496 |
+
0.0,
|
| 1497 |
+
0.0,
|
| 1498 |
+
0.0,
|
| 1499 |
+
0.0,
|
| 1500 |
+
0.0
|
| 1501 |
+
],
|
| 1502 |
+
"q99": [
|
| 1503 |
+
0.0,
|
| 1504 |
+
0.0,
|
| 1505 |
+
0.0,
|
| 1506 |
+
0.0,
|
| 1507 |
+
0.0,
|
| 1508 |
+
0.0,
|
| 1509 |
+
0.0
|
| 1510 |
+
],
|
| 1511 |
+
"std": [
|
| 1512 |
+
0.0,
|
| 1513 |
+
0.0,
|
| 1514 |
+
0.0,
|
| 1515 |
+
0.0,
|
| 1516 |
+
0.0,
|
| 1517 |
+
0.0,
|
| 1518 |
+
0.0
|
| 1519 |
+
]
|
| 1520 |
+
}
|
| 1521 |
+
},
|
| 1522 |
+
"fractal20220817_data": {
|
| 1523 |
+
"action": {
|
| 1524 |
+
"mask": [
|
| 1525 |
+
true,
|
| 1526 |
+
true,
|
| 1527 |
+
true,
|
| 1528 |
+
true,
|
| 1529 |
+
true,
|
| 1530 |
+
true,
|
| 1531 |
+
false
|
| 1532 |
+
],
|
| 1533 |
+
"max": [
|
| 1534 |
+
2.9984593391418457,
|
| 1535 |
+
22.09052848815918,
|
| 1536 |
+
2.7507524490356445,
|
| 1537 |
+
1.570636510848999,
|
| 1538 |
+
1.5321086645126343,
|
| 1539 |
+
1.5691522359848022,
|
| 1540 |
+
1.0
|
| 1541 |
+
],
|
| 1542 |
+
"mean": [
|
| 1543 |
+
0.006987582892179489,
|
| 1544 |
+
0.006265917327255011,
|
| 1545 |
+
-0.01262515690177679,
|
| 1546 |
+
0.04333311319351196,
|
| 1547 |
+
-0.005756212864071131,
|
| 1548 |
+
0.0009130256366916001,
|
| 1549 |
+
0.5354204773902893
|
| 1550 |
+
],
|
| 1551 |
+
"min": [
|
| 1552 |
+
-2.0204520225524902,
|
| 1553 |
+
-5.497899532318115,
|
| 1554 |
+
-2.031663417816162,
|
| 1555 |
+
-1.569917917251587,
|
| 1556 |
+
-1.569892168045044,
|
| 1557 |
+
-1.570419430732727,
|
| 1558 |
+
0.0
|
| 1559 |
+
],
|
| 1560 |
+
"q01": [
|
| 1561 |
+
-0.22453527510166169,
|
| 1562 |
+
-0.14820013284683228,
|
| 1563 |
+
-0.231589707583189,
|
| 1564 |
+
-0.3517994859814644,
|
| 1565 |
+
-0.4193011274933815,
|
| 1566 |
+
-0.43643461108207704,
|
| 1567 |
+
0.0
|
| 1568 |
+
],
|
| 1569 |
+
"q99": [
|
| 1570 |
+
0.17824687153100965,
|
| 1571 |
+
0.14938379630446405,
|
| 1572 |
+
0.21842354819178575,
|
| 1573 |
+
0.5892666035890578,
|
| 1574 |
+
0.35272657424211445,
|
| 1575 |
+
0.44796681255102094,
|
| 1576 |
+
1.0
|
| 1577 |
+
],
|
| 1578 |
+
"std": [
|
| 1579 |
+
0.0692116990685463,
|
| 1580 |
+
0.05970962345600128,
|
| 1581 |
+
0.07353084534406662,
|
| 1582 |
+
0.15610496699810028,
|
| 1583 |
+
0.13164450228214264,
|
| 1584 |
+
0.14593800902366638,
|
| 1585 |
+
0.497110515832901
|
| 1586 |
+
]
|
| 1587 |
+
},
|
| 1588 |
+
"num_trajectories": 87212,
|
| 1589 |
+
"num_transitions": 3786400,
|
| 1590 |
+
"proprio": {
|
| 1591 |
+
"max": [
|
| 1592 |
+
0.0,
|
| 1593 |
+
0.0,
|
| 1594 |
+
0.0,
|
| 1595 |
+
0.0,
|
| 1596 |
+
0.0,
|
| 1597 |
+
0.0,
|
| 1598 |
+
0.0
|
| 1599 |
+
],
|
| 1600 |
+
"mean": [
|
| 1601 |
+
0.0,
|
| 1602 |
+
0.0,
|
| 1603 |
+
0.0,
|
| 1604 |
+
0.0,
|
| 1605 |
+
0.0,
|
| 1606 |
+
0.0,
|
| 1607 |
+
0.0
|
| 1608 |
+
],
|
| 1609 |
+
"min": [
|
| 1610 |
+
0.0,
|
| 1611 |
+
0.0,
|
| 1612 |
+
0.0,
|
| 1613 |
+
0.0,
|
| 1614 |
+
0.0,
|
| 1615 |
+
0.0,
|
| 1616 |
+
0.0
|
| 1617 |
+
],
|
| 1618 |
+
"q01": [
|
| 1619 |
+
0.0,
|
| 1620 |
+
0.0,
|
| 1621 |
+
0.0,
|
| 1622 |
+
0.0,
|
| 1623 |
+
0.0,
|
| 1624 |
+
0.0,
|
| 1625 |
+
0.0
|
| 1626 |
+
],
|
| 1627 |
+
"q99": [
|
| 1628 |
+
0.0,
|
| 1629 |
+
0.0,
|
| 1630 |
+
0.0,
|
| 1631 |
+
0.0,
|
| 1632 |
+
0.0,
|
| 1633 |
+
0.0,
|
| 1634 |
+
0.0
|
| 1635 |
+
],
|
| 1636 |
+
"std": [
|
| 1637 |
+
0.0,
|
| 1638 |
+
0.0,
|
| 1639 |
+
0.0,
|
| 1640 |
+
0.0,
|
| 1641 |
+
0.0,
|
| 1642 |
+
0.0,
|
| 1643 |
+
0.0
|
| 1644 |
+
]
|
| 1645 |
+
}
|
| 1646 |
+
},
|
| 1647 |
+
"furniture_bench_dataset_converted_externally_to_rlds": {
|
| 1648 |
+
"action": {
|
| 1649 |
+
"mask": [
|
| 1650 |
+
true,
|
| 1651 |
+
true,
|
| 1652 |
+
true,
|
| 1653 |
+
true,
|
| 1654 |
+
true,
|
| 1655 |
+
true,
|
| 1656 |
+
false
|
| 1657 |
+
],
|
| 1658 |
+
"max": [
|
| 1659 |
+
0.10000000149011612,
|
| 1660 |
+
0.10000000149011612,
|
| 1661 |
+
0.10000000149011612,
|
| 1662 |
+
0.8651833534240723,
|
| 1663 |
+
1.0909736156463623,
|
| 1664 |
+
2.863185405731201,
|
| 1665 |
+
1.0
|
| 1666 |
+
],
|
| 1667 |
+
"mean": [
|
| 1668 |
+
0.00014610752987209707,
|
| 1669 |
+
0.0010830952087417245,
|
| 1670 |
+
0.0006224989192560315,
|
| 1671 |
+
-0.003303206292912364,
|
| 1672 |
+
-0.0026880695950239897,
|
| 1673 |
+
0.018242603167891502,
|
| 1674 |
+
0.48854944109916687
|
| 1675 |
+
],
|
| 1676 |
+
"min": [
|
| 1677 |
+
-0.10495579987764359,
|
| 1678 |
+
-0.10939455777406693,
|
| 1679 |
+
-0.10000000149011612,
|
| 1680 |
+
-0.971906840801239,
|
| 1681 |
+
-1.0475432872772217,
|
| 1682 |
+
-3.06000018119812,
|
| 1683 |
+
0.0
|
| 1684 |
+
],
|
| 1685 |
+
"q01": [
|
| 1686 |
+
-0.053988199681043625,
|
| 1687 |
+
-0.05049169331789017,
|
| 1688 |
+
-0.032499241530895236,
|
| 1689 |
+
-0.1953887003660202,
|
| 1690 |
+
-0.41674559473991396,
|
| 1691 |
+
-0.8886768388748169,
|
| 1692 |
+
0.0
|
| 1693 |
+
],
|
| 1694 |
+
"q99": [
|
| 1695 |
+
0.05414841488003723,
|
| 1696 |
+
0.04965164884924884,
|
| 1697 |
+
0.060055799782276154,
|
| 1698 |
+
0.18231668293476103,
|
| 1699 |
+
0.39867786407470646,
|
| 1700 |
+
0.8772023963928218,
|
| 1701 |
+
1.0
|
| 1702 |
+
],
|
| 1703 |
+
"std": [
|
| 1704 |
+
0.01610708422958851,
|
| 1705 |
+
0.014891477301716805,
|
| 1706 |
+
0.014014219865202904,
|
| 1707 |
+
0.058274295181035995,
|
| 1708 |
+
0.11417088657617569,
|
| 1709 |
+
0.33479776978492737,
|
| 1710 |
+
0.49991825222969055
|
| 1711 |
+
]
|
| 1712 |
+
},
|
| 1713 |
+
"num_trajectories": 5100,
|
| 1714 |
+
"num_transitions": 3948057,
|
| 1715 |
+
"proprio": {
|
| 1716 |
+
"max": [
|
| 1717 |
+
0.0,
|
| 1718 |
+
0.0,
|
| 1719 |
+
0.0,
|
| 1720 |
+
0.0,
|
| 1721 |
+
0.0,
|
| 1722 |
+
0.0,
|
| 1723 |
+
0.0
|
| 1724 |
+
],
|
| 1725 |
+
"mean": [
|
| 1726 |
+
0.0,
|
| 1727 |
+
0.0,
|
| 1728 |
+
0.0,
|
| 1729 |
+
0.0,
|
| 1730 |
+
0.0,
|
| 1731 |
+
0.0,
|
| 1732 |
+
0.0
|
| 1733 |
+
],
|
| 1734 |
+
"min": [
|
| 1735 |
+
0.0,
|
| 1736 |
+
0.0,
|
| 1737 |
+
0.0,
|
| 1738 |
+
0.0,
|
| 1739 |
+
0.0,
|
| 1740 |
+
0.0,
|
| 1741 |
+
0.0
|
| 1742 |
+
],
|
| 1743 |
+
"q01": [
|
| 1744 |
+
0.0,
|
| 1745 |
+
0.0,
|
| 1746 |
+
0.0,
|
| 1747 |
+
0.0,
|
| 1748 |
+
0.0,
|
| 1749 |
+
0.0,
|
| 1750 |
+
0.0
|
| 1751 |
+
],
|
| 1752 |
+
"q99": [
|
| 1753 |
+
0.0,
|
| 1754 |
+
0.0,
|
| 1755 |
+
0.0,
|
| 1756 |
+
0.0,
|
| 1757 |
+
0.0,
|
| 1758 |
+
0.0,
|
| 1759 |
+
0.0
|
| 1760 |
+
],
|
| 1761 |
+
"std": [
|
| 1762 |
+
0.0,
|
| 1763 |
+
0.0,
|
| 1764 |
+
0.0,
|
| 1765 |
+
0.0,
|
| 1766 |
+
0.0,
|
| 1767 |
+
0.0,
|
| 1768 |
+
0.0
|
| 1769 |
+
]
|
| 1770 |
+
}
|
| 1771 |
+
},
|
| 1772 |
+
"iamlab_cmu_pickup_insert_converted_externally_to_rlds": {
|
| 1773 |
+
"action": {
|
| 1774 |
+
"mask": [
|
| 1775 |
+
true,
|
| 1776 |
+
true,
|
| 1777 |
+
true,
|
| 1778 |
+
true,
|
| 1779 |
+
true,
|
| 1780 |
+
true,
|
| 1781 |
+
false
|
| 1782 |
+
],
|
| 1783 |
+
"max": [
|
| 1784 |
+
0.6634981632232666,
|
| 1785 |
+
0.23428471386432648,
|
| 1786 |
+
0.4308285415172577,
|
| 1787 |
+
3.1415927410125732,
|
| 1788 |
+
0.13647015392780304,
|
| 1789 |
+
3.141592502593994,
|
| 1790 |
+
1.0
|
| 1791 |
+
],
|
| 1792 |
+
"mean": [
|
| 1793 |
+
0.5274372696876526,
|
| 1794 |
+
0.02858201041817665,
|
| 1795 |
+
0.18712575733661652,
|
| 1796 |
+
1.2339589595794678,
|
| 1797 |
+
0.03226623684167862,
|
| 1798 |
+
-1.4199490547180176,
|
| 1799 |
+
0.5550631880760193
|
| 1800 |
+
],
|
| 1801 |
+
"min": [
|
| 1802 |
+
0.3071657121181488,
|
| 1803 |
+
-0.29754969477653503,
|
| 1804 |
+
0.06578229367733002,
|
| 1805 |
+
-3.1415927410125732,
|
| 1806 |
+
-0.04584203287959099,
|
| 1807 |
+
-3.141592502593994,
|
| 1808 |
+
0.0
|
| 1809 |
+
],
|
| 1810 |
+
"q01": [
|
| 1811 |
+
0.3148897051811218,
|
| 1812 |
+
-0.20317550599575043,
|
| 1813 |
+
0.06785467118024827,
|
| 1814 |
+
-3.140952730178833,
|
| 1815 |
+
-0.029743434861302376,
|
| 1816 |
+
-3.141091251373291,
|
| 1817 |
+
0.0
|
| 1818 |
+
],
|
| 1819 |
+
"q99": [
|
| 1820 |
+
0.6472805738449097,
|
| 1821 |
+
0.20846802592277527,
|
| 1822 |
+
0.36855655312538155,
|
| 1823 |
+
3.1409926891326903,
|
| 1824 |
+
0.11424950212240226,
|
| 1825 |
+
3.1410969257354737,
|
| 1826 |
+
1.0
|
| 1827 |
+
],
|
| 1828 |
+
"std": [
|
| 1829 |
+
0.08108345419168472,
|
| 1830 |
+
0.1116757020354271,
|
| 1831 |
+
0.07747554779052734,
|
| 1832 |
+
2.8737246990203857,
|
| 1833 |
+
0.02774704433977604,
|
| 1834 |
+
2.7678682804107666,
|
| 1835 |
+
0.49695101380348206
|
| 1836 |
+
]
|
| 1837 |
+
},
|
| 1838 |
+
"num_trajectories": 631,
|
| 1839 |
+
"num_transitions": 146241,
|
| 1840 |
+
"proprio": {
|
| 1841 |
+
"max": [
|
| 1842 |
+
0.0,
|
| 1843 |
+
0.0,
|
| 1844 |
+
0.0,
|
| 1845 |
+
0.0,
|
| 1846 |
+
0.0,
|
| 1847 |
+
0.0,
|
| 1848 |
+
0.0
|
| 1849 |
+
],
|
| 1850 |
+
"mean": [
|
| 1851 |
+
0.0,
|
| 1852 |
+
0.0,
|
| 1853 |
+
0.0,
|
| 1854 |
+
0.0,
|
| 1855 |
+
0.0,
|
| 1856 |
+
0.0,
|
| 1857 |
+
0.0
|
| 1858 |
+
],
|
| 1859 |
+
"min": [
|
| 1860 |
+
0.0,
|
| 1861 |
+
0.0,
|
| 1862 |
+
0.0,
|
| 1863 |
+
0.0,
|
| 1864 |
+
0.0,
|
| 1865 |
+
0.0,
|
| 1866 |
+
0.0
|
| 1867 |
+
],
|
| 1868 |
+
"q01": [
|
| 1869 |
+
0.0,
|
| 1870 |
+
0.0,
|
| 1871 |
+
0.0,
|
| 1872 |
+
0.0,
|
| 1873 |
+
0.0,
|
| 1874 |
+
0.0,
|
| 1875 |
+
0.0
|
| 1876 |
+
],
|
| 1877 |
+
"q99": [
|
| 1878 |
+
0.0,
|
| 1879 |
+
0.0,
|
| 1880 |
+
0.0,
|
| 1881 |
+
0.0,
|
| 1882 |
+
0.0,
|
| 1883 |
+
0.0,
|
| 1884 |
+
0.0
|
| 1885 |
+
],
|
| 1886 |
+
"std": [
|
| 1887 |
+
0.0,
|
| 1888 |
+
0.0,
|
| 1889 |
+
0.0,
|
| 1890 |
+
0.0,
|
| 1891 |
+
0.0,
|
| 1892 |
+
0.0,
|
| 1893 |
+
0.0
|
| 1894 |
+
]
|
| 1895 |
+
}
|
| 1896 |
+
},
|
| 1897 |
+
"jaco_play": {
|
| 1898 |
+
"action": {
|
| 1899 |
+
"mask": [
|
| 1900 |
+
true,
|
| 1901 |
+
true,
|
| 1902 |
+
true,
|
| 1903 |
+
true,
|
| 1904 |
+
true,
|
| 1905 |
+
true,
|
| 1906 |
+
false
|
| 1907 |
+
],
|
| 1908 |
+
"max": [
|
| 1909 |
+
0.20000000298023224,
|
| 1910 |
+
0.20000000298023224,
|
| 1911 |
+
0.20000000298023224,
|
| 1912 |
+
0.0,
|
| 1913 |
+
0.0,
|
| 1914 |
+
0.0,
|
| 1915 |
+
1.0
|
| 1916 |
+
],
|
| 1917 |
+
"mean": [
|
| 1918 |
+
0.0009658430935814977,
|
| 1919 |
+
-0.00580078037455678,
|
| 1920 |
+
-0.00395062193274498,
|
| 1921 |
+
0.0,
|
| 1922 |
+
0.0,
|
| 1923 |
+
0.0,
|
| 1924 |
+
0.34934908151626587
|
| 1925 |
+
],
|
| 1926 |
+
"min": [
|
| 1927 |
+
-0.20000000298023224,
|
| 1928 |
+
-0.20000000298023224,
|
| 1929 |
+
-0.20000000298023224,
|
| 1930 |
+
0.0,
|
| 1931 |
+
0.0,
|
| 1932 |
+
0.0,
|
| 1933 |
+
0.0
|
| 1934 |
+
],
|
| 1935 |
+
"q01": [
|
| 1936 |
+
-0.20000000298023224,
|
| 1937 |
+
-0.20000000298023224,
|
| 1938 |
+
-0.20000000298023224,
|
| 1939 |
+
0.0,
|
| 1940 |
+
0.0,
|
| 1941 |
+
0.0,
|
| 1942 |
+
0.0
|
| 1943 |
+
],
|
| 1944 |
+
"q99": [
|
| 1945 |
+
0.20000000298023224,
|
| 1946 |
+
0.20000000298023224,
|
| 1947 |
+
0.20000000298023224,
|
| 1948 |
+
0.0,
|
| 1949 |
+
0.0,
|
| 1950 |
+
0.0,
|
| 1951 |
+
1.0
|
| 1952 |
+
],
|
| 1953 |
+
"std": [
|
| 1954 |
+
0.12235074490308762,
|
| 1955 |
+
0.09678777307271957,
|
| 1956 |
+
0.11155334860086441,
|
| 1957 |
+
0.0,
|
| 1958 |
+
0.0,
|
| 1959 |
+
0.0,
|
| 1960 |
+
0.4768252968788147
|
| 1961 |
+
]
|
| 1962 |
+
},
|
| 1963 |
+
"num_trajectories": 1085,
|
| 1964 |
+
"num_transitions": 77965,
|
| 1965 |
+
"proprio": {
|
| 1966 |
+
"max": [
|
| 1967 |
+
0.0,
|
| 1968 |
+
0.0,
|
| 1969 |
+
0.0,
|
| 1970 |
+
0.0,
|
| 1971 |
+
0.0,
|
| 1972 |
+
0.0,
|
| 1973 |
+
0.0
|
| 1974 |
+
],
|
| 1975 |
+
"mean": [
|
| 1976 |
+
0.0,
|
| 1977 |
+
0.0,
|
| 1978 |
+
0.0,
|
| 1979 |
+
0.0,
|
| 1980 |
+
0.0,
|
| 1981 |
+
0.0,
|
| 1982 |
+
0.0
|
| 1983 |
+
],
|
| 1984 |
+
"min": [
|
| 1985 |
+
0.0,
|
| 1986 |
+
0.0,
|
| 1987 |
+
0.0,
|
| 1988 |
+
0.0,
|
| 1989 |
+
0.0,
|
| 1990 |
+
0.0,
|
| 1991 |
+
0.0
|
| 1992 |
+
],
|
| 1993 |
+
"q01": [
|
| 1994 |
+
0.0,
|
| 1995 |
+
0.0,
|
| 1996 |
+
0.0,
|
| 1997 |
+
0.0,
|
| 1998 |
+
0.0,
|
| 1999 |
+
0.0,
|
| 2000 |
+
0.0
|
| 2001 |
+
],
|
| 2002 |
+
"q99": [
|
| 2003 |
+
0.0,
|
| 2004 |
+
0.0,
|
| 2005 |
+
0.0,
|
| 2006 |
+
0.0,
|
| 2007 |
+
0.0,
|
| 2008 |
+
0.0,
|
| 2009 |
+
0.0
|
| 2010 |
+
],
|
| 2011 |
+
"std": [
|
| 2012 |
+
0.0,
|
| 2013 |
+
0.0,
|
| 2014 |
+
0.0,
|
| 2015 |
+
0.0,
|
| 2016 |
+
0.0,
|
| 2017 |
+
0.0,
|
| 2018 |
+
0.0
|
| 2019 |
+
]
|
| 2020 |
+
}
|
| 2021 |
+
},
|
| 2022 |
+
"kuka": {
|
| 2023 |
+
"action": {
|
| 2024 |
+
"mask": [
|
| 2025 |
+
true,
|
| 2026 |
+
true,
|
| 2027 |
+
true,
|
| 2028 |
+
true,
|
| 2029 |
+
true,
|
| 2030 |
+
true,
|
| 2031 |
+
false
|
| 2032 |
+
],
|
| 2033 |
+
"max": [
|
| 2034 |
+
0.1697135865688324,
|
| 2035 |
+
0.2777623236179352,
|
| 2036 |
+
0.43710532784461975,
|
| 2037 |
+
0.0,
|
| 2038 |
+
0.0,
|
| 2039 |
+
1.9684287309646606,
|
| 2040 |
+
1.0
|
| 2041 |
+
],
|
| 2042 |
+
"mean": [
|
| 2043 |
+
-0.0004668905457947403,
|
| 2044 |
+
0.00040138536132872105,
|
| 2045 |
+
-0.001280792523175478,
|
| 2046 |
+
0.0,
|
| 2047 |
+
0.0,
|
| 2048 |
+
-0.03722453489899635,
|
| 2049 |
+
0.4131543040275574
|
| 2050 |
+
],
|
| 2051 |
+
"min": [
|
| 2052 |
+
-0.159867063164711,
|
| 2053 |
+
-0.2892282009124756,
|
| 2054 |
+
-0.2795473635196686,
|
| 2055 |
+
0.0,
|
| 2056 |
+
0.0,
|
| 2057 |
+
-1.9875637292861938,
|
| 2058 |
+
0.0
|
| 2059 |
+
],
|
| 2060 |
+
"q01": [
|
| 2061 |
+
-0.06619441494345665,
|
| 2062 |
+
-0.08713878810405731,
|
| 2063 |
+
-0.15083016991615295,
|
| 2064 |
+
0.0,
|
| 2065 |
+
0.0,
|
| 2066 |
+
-0.5415697038173676,
|
| 2067 |
+
0.0
|
| 2068 |
+
],
|
| 2069 |
+
"q99": [
|
| 2070 |
+
0.06601839080452929,
|
| 2071 |
+
0.08732476785779003,
|
| 2072 |
+
0.18168179214000715,
|
| 2073 |
+
0.0,
|
| 2074 |
+
0.0,
|
| 2075 |
+
0.2923380345106127,
|
| 2076 |
+
1.0
|
| 2077 |
+
],
|
| 2078 |
+
"std": [
|
| 2079 |
+
0.02083250693976879,
|
| 2080 |
+
0.02915887162089348,
|
| 2081 |
+
0.06422865390777588,
|
| 2082 |
+
0.0,
|
| 2083 |
+
0.0,
|
| 2084 |
+
0.14224295318126678,
|
| 2085 |
+
0.49086448550224304
|
| 2086 |
+
]
|
| 2087 |
+
},
|
| 2088 |
+
"num_trajectories": 209880,
|
| 2089 |
+
"num_transitions": 2455879,
|
| 2090 |
+
"proprio": {
|
| 2091 |
+
"max": [
|
| 2092 |
+
0.0,
|
| 2093 |
+
0.0,
|
| 2094 |
+
0.0,
|
| 2095 |
+
0.0,
|
| 2096 |
+
0.0,
|
| 2097 |
+
0.0,
|
| 2098 |
+
0.0
|
| 2099 |
+
],
|
| 2100 |
+
"mean": [
|
| 2101 |
+
0.0,
|
| 2102 |
+
0.0,
|
| 2103 |
+
0.0,
|
| 2104 |
+
0.0,
|
| 2105 |
+
0.0,
|
| 2106 |
+
0.0,
|
| 2107 |
+
0.0
|
| 2108 |
+
],
|
| 2109 |
+
"min": [
|
| 2110 |
+
0.0,
|
| 2111 |
+
0.0,
|
| 2112 |
+
0.0,
|
| 2113 |
+
0.0,
|
| 2114 |
+
0.0,
|
| 2115 |
+
0.0,
|
| 2116 |
+
0.0
|
| 2117 |
+
],
|
| 2118 |
+
"q01": [
|
| 2119 |
+
0.0,
|
| 2120 |
+
0.0,
|
| 2121 |
+
0.0,
|
| 2122 |
+
0.0,
|
| 2123 |
+
0.0,
|
| 2124 |
+
0.0,
|
| 2125 |
+
0.0
|
| 2126 |
+
],
|
| 2127 |
+
"q99": [
|
| 2128 |
+
0.0,
|
| 2129 |
+
0.0,
|
| 2130 |
+
0.0,
|
| 2131 |
+
0.0,
|
| 2132 |
+
0.0,
|
| 2133 |
+
0.0,
|
| 2134 |
+
0.0
|
| 2135 |
+
],
|
| 2136 |
+
"std": [
|
| 2137 |
+
0.0,
|
| 2138 |
+
0.0,
|
| 2139 |
+
0.0,
|
| 2140 |
+
0.0,
|
| 2141 |
+
0.0,
|
| 2142 |
+
0.0,
|
| 2143 |
+
0.0
|
| 2144 |
+
]
|
| 2145 |
+
}
|
| 2146 |
+
},
|
| 2147 |
+
"nyu_franka_play_dataset_converted_externally_to_rlds": {
|
| 2148 |
+
"action": {
|
| 2149 |
+
"mask": [
|
| 2150 |
+
true,
|
| 2151 |
+
true,
|
| 2152 |
+
true,
|
| 2153 |
+
true,
|
| 2154 |
+
true,
|
| 2155 |
+
true,
|
| 2156 |
+
false
|
| 2157 |
+
],
|
| 2158 |
+
"max": [
|
| 2159 |
+
0.06424188613891602,
|
| 2160 |
+
0.07027634978294373,
|
| 2161 |
+
0.06129661202430725,
|
| 2162 |
+
6.281067848205566,
|
| 2163 |
+
0.1967729926109314,
|
| 2164 |
+
0.26377415657043457,
|
| 2165 |
+
1.0
|
| 2166 |
+
],
|
| 2167 |
+
"mean": [
|
| 2168 |
+
0.001021989737637341,
|
| 2169 |
+
-0.00012002651783404872,
|
| 2170 |
+
0.00032894269679673016,
|
| 2171 |
+
0.0015034361276775599,
|
| 2172 |
+
-0.002198522910475731,
|
| 2173 |
+
-0.001663230243138969,
|
| 2174 |
+
0.7230083346366882
|
| 2175 |
+
],
|
| 2176 |
+
"min": [
|
| 2177 |
+
-0.05952230095863342,
|
| 2178 |
+
-0.07232445478439331,
|
| 2179 |
+
-0.06730806827545166,
|
| 2180 |
+
-6.278434753417969,
|
| 2181 |
+
-0.21479034423828125,
|
| 2182 |
+
-0.3627619743347168,
|
| 2183 |
+
0.0
|
| 2184 |
+
],
|
| 2185 |
+
"q01": [
|
| 2186 |
+
-0.03199600875377655,
|
| 2187 |
+
-0.032861671447753905,
|
| 2188 |
+
-0.03368805110454559,
|
| 2189 |
+
-0.12080862045288086,
|
| 2190 |
+
-0.12175218224525451,
|
| 2191 |
+
-0.11370223641395569,
|
| 2192 |
+
0.0
|
| 2193 |
+
],
|
| 2194 |
+
"q99": [
|
| 2195 |
+
0.03101520001888276,
|
| 2196 |
+
0.0373908892273903,
|
| 2197 |
+
0.03646374464035038,
|
| 2198 |
+
0.11764093399047852,
|
| 2199 |
+
0.1258920183777809,
|
| 2200 |
+
0.09366151213645942,
|
| 2201 |
+
1.0
|
| 2202 |
+
],
|
| 2203 |
+
"std": [
|
| 2204 |
+
0.01327415369451046,
|
| 2205 |
+
0.013215910643339157,
|
| 2206 |
+
0.012822109274566174,
|
| 2207 |
+
0.2732451558113098,
|
| 2208 |
+
0.057022541761398315,
|
| 2209 |
+
0.039172880351543427,
|
| 2210 |
+
0.44752755761146545
|
| 2211 |
+
]
|
| 2212 |
+
},
|
| 2213 |
+
"num_trajectories": 456,
|
| 2214 |
+
"num_transitions": 44875,
|
| 2215 |
+
"proprio": {
|
| 2216 |
+
"max": [
|
| 2217 |
+
0.0,
|
| 2218 |
+
0.0,
|
| 2219 |
+
0.0,
|
| 2220 |
+
0.0,
|
| 2221 |
+
0.0,
|
| 2222 |
+
0.0,
|
| 2223 |
+
0.0
|
| 2224 |
+
],
|
| 2225 |
+
"mean": [
|
| 2226 |
+
0.0,
|
| 2227 |
+
0.0,
|
| 2228 |
+
0.0,
|
| 2229 |
+
0.0,
|
| 2230 |
+
0.0,
|
| 2231 |
+
0.0,
|
| 2232 |
+
0.0
|
| 2233 |
+
],
|
| 2234 |
+
"min": [
|
| 2235 |
+
0.0,
|
| 2236 |
+
0.0,
|
| 2237 |
+
0.0,
|
| 2238 |
+
0.0,
|
| 2239 |
+
0.0,
|
| 2240 |
+
0.0,
|
| 2241 |
+
0.0
|
| 2242 |
+
],
|
| 2243 |
+
"q01": [
|
| 2244 |
+
0.0,
|
| 2245 |
+
0.0,
|
| 2246 |
+
0.0,
|
| 2247 |
+
0.0,
|
| 2248 |
+
0.0,
|
| 2249 |
+
0.0,
|
| 2250 |
+
0.0
|
| 2251 |
+
],
|
| 2252 |
+
"q99": [
|
| 2253 |
+
0.0,
|
| 2254 |
+
0.0,
|
| 2255 |
+
0.0,
|
| 2256 |
+
0.0,
|
| 2257 |
+
0.0,
|
| 2258 |
+
0.0,
|
| 2259 |
+
0.0
|
| 2260 |
+
],
|
| 2261 |
+
"std": [
|
| 2262 |
+
0.0,
|
| 2263 |
+
0.0,
|
| 2264 |
+
0.0,
|
| 2265 |
+
0.0,
|
| 2266 |
+
0.0,
|
| 2267 |
+
0.0,
|
| 2268 |
+
0.0
|
| 2269 |
+
]
|
| 2270 |
+
}
|
| 2271 |
+
},
|
| 2272 |
+
"roboturk": {
|
| 2273 |
+
"action": {
|
| 2274 |
+
"mask": [
|
| 2275 |
+
true,
|
| 2276 |
+
true,
|
| 2277 |
+
true,
|
| 2278 |
+
true,
|
| 2279 |
+
true,
|
| 2280 |
+
true,
|
| 2281 |
+
false
|
| 2282 |
+
],
|
| 2283 |
+
"max": [
|
| 2284 |
+
0.39124172925949097,
|
| 2285 |
+
0.4601028263568878,
|
| 2286 |
+
0.4870833456516266,
|
| 2287 |
+
1.816888689994812,
|
| 2288 |
+
1.8240282535552979,
|
| 2289 |
+
1.4824820756912231,
|
| 2290 |
+
1.0
|
| 2291 |
+
],
|
| 2292 |
+
"mean": [
|
| 2293 |
+
0.0014448732836171985,
|
| 2294 |
+
-0.0015945249469950795,
|
| 2295 |
+
-0.0011753785656765103,
|
| 2296 |
+
0.0023012510500848293,
|
| 2297 |
+
-0.0009382463176734746,
|
| 2298 |
+
-0.00011485807772260159,
|
| 2299 |
+
0.5746025443077087
|
| 2300 |
+
],
|
| 2301 |
+
"min": [
|
| 2302 |
+
-0.6546999216079712,
|
| 2303 |
+
-0.6365841031074524,
|
| 2304 |
+
-0.4217723608016968,
|
| 2305 |
+
-1.6695482730865479,
|
| 2306 |
+
-1.8023357391357422,
|
| 2307 |
+
-1.4630827903747559,
|
| 2308 |
+
0.0
|
| 2309 |
+
],
|
| 2310 |
+
"q01": [
|
| 2311 |
+
-0.1342635464668274,
|
| 2312 |
+
-0.19996687173843383,
|
| 2313 |
+
-0.1482972100377083,
|
| 2314 |
+
-0.20720748245716095,
|
| 2315 |
+
-0.09676413893699647,
|
| 2316 |
+
-0.18075634717941286,
|
| 2317 |
+
0.0
|
| 2318 |
+
],
|
| 2319 |
+
"q99": [
|
| 2320 |
+
0.14956976801157001,
|
| 2321 |
+
0.1805950567126275,
|
| 2322 |
+
0.18841815620660796,
|
| 2323 |
+
0.21615413755178453,
|
| 2324 |
+
0.09457383215427405,
|
| 2325 |
+
0.18543301910162005,
|
| 2326 |
+
1.0
|
| 2327 |
+
],
|
| 2328 |
+
"std": [
|
| 2329 |
+
0.04935386776924133,
|
| 2330 |
+
0.0635455846786499,
|
| 2331 |
+
0.061164740473032,
|
| 2332 |
+
0.09553450345993042,
|
| 2333 |
+
0.08420111238956451,
|
| 2334 |
+
0.06517903506755829,
|
| 2335 |
+
0.49452081322669983
|
| 2336 |
+
]
|
| 2337 |
+
},
|
| 2338 |
+
"num_trajectories": 1995,
|
| 2339 |
+
"num_transitions": 187507,
|
| 2340 |
+
"proprio": {
|
| 2341 |
+
"max": [
|
| 2342 |
+
0.0,
|
| 2343 |
+
0.0,
|
| 2344 |
+
0.0,
|
| 2345 |
+
0.0,
|
| 2346 |
+
0.0,
|
| 2347 |
+
0.0,
|
| 2348 |
+
0.0
|
| 2349 |
+
],
|
| 2350 |
+
"mean": [
|
| 2351 |
+
0.0,
|
| 2352 |
+
0.0,
|
| 2353 |
+
0.0,
|
| 2354 |
+
0.0,
|
| 2355 |
+
0.0,
|
| 2356 |
+
0.0,
|
| 2357 |
+
0.0
|
| 2358 |
+
],
|
| 2359 |
+
"min": [
|
| 2360 |
+
0.0,
|
| 2361 |
+
0.0,
|
| 2362 |
+
0.0,
|
| 2363 |
+
0.0,
|
| 2364 |
+
0.0,
|
| 2365 |
+
0.0,
|
| 2366 |
+
0.0
|
| 2367 |
+
],
|
| 2368 |
+
"q01": [
|
| 2369 |
+
0.0,
|
| 2370 |
+
0.0,
|
| 2371 |
+
0.0,
|
| 2372 |
+
0.0,
|
| 2373 |
+
0.0,
|
| 2374 |
+
0.0,
|
| 2375 |
+
0.0
|
| 2376 |
+
],
|
| 2377 |
+
"q99": [
|
| 2378 |
+
0.0,
|
| 2379 |
+
0.0,
|
| 2380 |
+
0.0,
|
| 2381 |
+
0.0,
|
| 2382 |
+
0.0,
|
| 2383 |
+
0.0,
|
| 2384 |
+
0.0
|
| 2385 |
+
],
|
| 2386 |
+
"std": [
|
| 2387 |
+
0.0,
|
| 2388 |
+
0.0,
|
| 2389 |
+
0.0,
|
| 2390 |
+
0.0,
|
| 2391 |
+
0.0,
|
| 2392 |
+
0.0,
|
| 2393 |
+
0.0
|
| 2394 |
+
]
|
| 2395 |
+
}
|
| 2396 |
+
},
|
| 2397 |
+
"stanford_hydra_dataset_converted_externally_to_rlds": {
|
| 2398 |
+
"action": {
|
| 2399 |
+
"mask": [
|
| 2400 |
+
true,
|
| 2401 |
+
true,
|
| 2402 |
+
true,
|
| 2403 |
+
true,
|
| 2404 |
+
true,
|
| 2405 |
+
true,
|
| 2406 |
+
false
|
| 2407 |
+
],
|
| 2408 |
+
"max": [
|
| 2409 |
+
0.02499854564666748,
|
| 2410 |
+
0.02499903365969658,
|
| 2411 |
+
0.024999922141432762,
|
| 2412 |
+
0.24974457919597626,
|
| 2413 |
+
0.24997030198574066,
|
| 2414 |
+
0.24999946355819702,
|
| 2415 |
+
1.0
|
| 2416 |
+
],
|
| 2417 |
+
"mean": [
|
| 2418 |
+
0.0007790001109242439,
|
| 2419 |
+
0.00013707754260394722,
|
| 2420 |
+
-0.0002548607881180942,
|
| 2421 |
+
0.0012903271708637476,
|
| 2422 |
+
-0.004751681815832853,
|
| 2423 |
+
0.002692886395379901,
|
| 2424 |
+
0.48855218291282654
|
| 2425 |
+
],
|
| 2426 |
+
"min": [
|
| 2427 |
+
-0.024999044835567474,
|
| 2428 |
+
-0.024999700486660004,
|
| 2429 |
+
-0.02499929815530777,
|
| 2430 |
+
-0.24993225932121277,
|
| 2431 |
+
-0.2499666064977646,
|
| 2432 |
+
-0.2499932497739792,
|
| 2433 |
+
0.0
|
| 2434 |
+
],
|
| 2435 |
+
"q01": [
|
| 2436 |
+
-0.019992006458342076,
|
| 2437 |
+
-0.02415412735193968,
|
| 2438 |
+
-0.022941758055239916,
|
| 2439 |
+
-0.11085530579090118,
|
| 2440 |
+
-0.12024572037160397,
|
| 2441 |
+
-0.13314770206809043,
|
| 2442 |
+
0.0
|
| 2443 |
+
],
|
| 2444 |
+
"q99": [
|
| 2445 |
+
0.022886231057345868,
|
| 2446 |
+
0.022358838934451335,
|
| 2447 |
+
0.02410089675337076,
|
| 2448 |
+
0.12370114490389822,
|
| 2449 |
+
0.11323311634361738,
|
| 2450 |
+
0.18474749639630164,
|
| 2451 |
+
1.0
|
| 2452 |
+
],
|
| 2453 |
+
"std": [
|
| 2454 |
+
0.008022161200642586,
|
| 2455 |
+
0.009131459519267082,
|
| 2456 |
+
0.009574338793754578,
|
| 2457 |
+
0.04122216999530792,
|
| 2458 |
+
0.0384303517639637,
|
| 2459 |
+
0.04606688767671585,
|
| 2460 |
+
0.49976691603660583
|
| 2461 |
+
]
|
| 2462 |
+
},
|
| 2463 |
+
"num_trajectories": 570,
|
| 2464 |
+
"num_transitions": 358234,
|
| 2465 |
+
"proprio": {
|
| 2466 |
+
"max": [
|
| 2467 |
+
0.0,
|
| 2468 |
+
0.0,
|
| 2469 |
+
0.0,
|
| 2470 |
+
0.0,
|
| 2471 |
+
0.0,
|
| 2472 |
+
0.0,
|
| 2473 |
+
0.0
|
| 2474 |
+
],
|
| 2475 |
+
"mean": [
|
| 2476 |
+
0.0,
|
| 2477 |
+
0.0,
|
| 2478 |
+
0.0,
|
| 2479 |
+
0.0,
|
| 2480 |
+
0.0,
|
| 2481 |
+
0.0,
|
| 2482 |
+
0.0
|
| 2483 |
+
],
|
| 2484 |
+
"min": [
|
| 2485 |
+
0.0,
|
| 2486 |
+
0.0,
|
| 2487 |
+
0.0,
|
| 2488 |
+
0.0,
|
| 2489 |
+
0.0,
|
| 2490 |
+
0.0,
|
| 2491 |
+
0.0
|
| 2492 |
+
],
|
| 2493 |
+
"q01": [
|
| 2494 |
+
0.0,
|
| 2495 |
+
0.0,
|
| 2496 |
+
0.0,
|
| 2497 |
+
0.0,
|
| 2498 |
+
0.0,
|
| 2499 |
+
0.0,
|
| 2500 |
+
0.0
|
| 2501 |
+
],
|
| 2502 |
+
"q99": [
|
| 2503 |
+
0.0,
|
| 2504 |
+
0.0,
|
| 2505 |
+
0.0,
|
| 2506 |
+
0.0,
|
| 2507 |
+
0.0,
|
| 2508 |
+
0.0,
|
| 2509 |
+
0.0
|
| 2510 |
+
],
|
| 2511 |
+
"std": [
|
| 2512 |
+
0.0,
|
| 2513 |
+
0.0,
|
| 2514 |
+
0.0,
|
| 2515 |
+
0.0,
|
| 2516 |
+
0.0,
|
| 2517 |
+
0.0,
|
| 2518 |
+
0.0
|
| 2519 |
+
]
|
| 2520 |
+
}
|
| 2521 |
+
},
|
| 2522 |
+
"taco_play": {
|
| 2523 |
+
"action": {
|
| 2524 |
+
"mask": [
|
| 2525 |
+
true,
|
| 2526 |
+
true,
|
| 2527 |
+
true,
|
| 2528 |
+
true,
|
| 2529 |
+
true,
|
| 2530 |
+
true,
|
| 2531 |
+
false
|
| 2532 |
+
],
|
| 2533 |
+
"max": [
|
| 2534 |
+
1.4915844202041626,
|
| 2535 |
+
2.1842432022094727,
|
| 2536 |
+
2.6836395263671875,
|
| 2537 |
+
5.035226821899414,
|
| 2538 |
+
2.665864944458008,
|
| 2539 |
+
4.250768661499023,
|
| 2540 |
+
1.0
|
| 2541 |
+
],
|
| 2542 |
+
"mean": [
|
| 2543 |
+
-0.003845922416076064,
|
| 2544 |
+
0.009671456180512905,
|
| 2545 |
+
0.012780580669641495,
|
| 2546 |
+
-0.005403771996498108,
|
| 2547 |
+
-0.009606587700545788,
|
| 2548 |
+
-0.002480733208358288,
|
| 2549 |
+
0.4263913035392761
|
| 2550 |
+
],
|
| 2551 |
+
"min": [
|
| 2552 |
+
-4.242457866668701,
|
| 2553 |
+
-3.192805051803589,
|
| 2554 |
+
-1.3371467590332031,
|
| 2555 |
+
-4.202683448791504,
|
| 2556 |
+
-2.6722638607025146,
|
| 2557 |
+
-3.3467135429382324,
|
| 2558 |
+
0.0
|
| 2559 |
+
],
|
| 2560 |
+
"q01": [
|
| 2561 |
+
-0.7106140398979186,
|
| 2562 |
+
-1.056944659948349,
|
| 2563 |
+
-0.5878450274467468,
|
| 2564 |
+
-0.7682853937149048,
|
| 2565 |
+
-0.7180147767066956,
|
| 2566 |
+
-1.5527938604354858,
|
| 2567 |
+
0.0
|
| 2568 |
+
],
|
| 2569 |
+
"q99": [
|
| 2570 |
+
0.6482916426658629,
|
| 2571 |
+
1.0051310062408447,
|
| 2572 |
+
0.9480248689651489,
|
| 2573 |
+
0.6926478147506714,
|
| 2574 |
+
0.6351067513227462,
|
| 2575 |
+
1.628010264635086,
|
| 2576 |
+
1.0
|
| 2577 |
+
],
|
| 2578 |
+
"std": [
|
| 2579 |
+
0.23254038393497467,
|
| 2580 |
+
0.36298269033432007,
|
| 2581 |
+
0.28692901134490967,
|
| 2582 |
+
0.2617705166339874,
|
| 2583 |
+
0.2438892275094986,
|
| 2584 |
+
0.5216503143310547,
|
| 2585 |
+
0.4946896731853485
|
| 2586 |
+
]
|
| 2587 |
+
},
|
| 2588 |
+
"num_trajectories": 3603,
|
| 2589 |
+
"num_transitions": 237798,
|
| 2590 |
+
"proprio": {
|
| 2591 |
+
"max": [
|
| 2592 |
+
0.0,
|
| 2593 |
+
0.0,
|
| 2594 |
+
0.0,
|
| 2595 |
+
0.0,
|
| 2596 |
+
0.0,
|
| 2597 |
+
0.0,
|
| 2598 |
+
0.0
|
| 2599 |
+
],
|
| 2600 |
+
"mean": [
|
| 2601 |
+
0.0,
|
| 2602 |
+
0.0,
|
| 2603 |
+
0.0,
|
| 2604 |
+
0.0,
|
| 2605 |
+
0.0,
|
| 2606 |
+
0.0,
|
| 2607 |
+
0.0
|
| 2608 |
+
],
|
| 2609 |
+
"min": [
|
| 2610 |
+
0.0,
|
| 2611 |
+
0.0,
|
| 2612 |
+
0.0,
|
| 2613 |
+
0.0,
|
| 2614 |
+
0.0,
|
| 2615 |
+
0.0,
|
| 2616 |
+
0.0
|
| 2617 |
+
],
|
| 2618 |
+
"q01": [
|
| 2619 |
+
0.0,
|
| 2620 |
+
0.0,
|
| 2621 |
+
0.0,
|
| 2622 |
+
0.0,
|
| 2623 |
+
0.0,
|
| 2624 |
+
0.0,
|
| 2625 |
+
0.0
|
| 2626 |
+
],
|
| 2627 |
+
"q99": [
|
| 2628 |
+
0.0,
|
| 2629 |
+
0.0,
|
| 2630 |
+
0.0,
|
| 2631 |
+
0.0,
|
| 2632 |
+
0.0,
|
| 2633 |
+
0.0,
|
| 2634 |
+
0.0
|
| 2635 |
+
],
|
| 2636 |
+
"std": [
|
| 2637 |
+
0.0,
|
| 2638 |
+
0.0,
|
| 2639 |
+
0.0,
|
| 2640 |
+
0.0,
|
| 2641 |
+
0.0,
|
| 2642 |
+
0.0,
|
| 2643 |
+
0.0
|
| 2644 |
+
]
|
| 2645 |
+
}
|
| 2646 |
+
},
|
| 2647 |
+
"toto": {
|
| 2648 |
+
"action": {
|
| 2649 |
+
"mask": [
|
| 2650 |
+
true,
|
| 2651 |
+
true,
|
| 2652 |
+
true,
|
| 2653 |
+
true,
|
| 2654 |
+
true,
|
| 2655 |
+
true,
|
| 2656 |
+
false
|
| 2657 |
+
],
|
| 2658 |
+
"max": [
|
| 2659 |
+
0.6839867234230042,
|
| 2660 |
+
0.4454185664653778,
|
| 2661 |
+
0.7984078526496887,
|
| 2662 |
+
2.120781660079956,
|
| 2663 |
+
1.371164321899414,
|
| 2664 |
+
1.4118704795837402,
|
| 2665 |
+
0.0
|
| 2666 |
+
],
|
| 2667 |
+
"mean": [
|
| 2668 |
+
0.38542115688323975,
|
| 2669 |
+
0.007769413758069277,
|
| 2670 |
+
0.3632740378379822,
|
| 2671 |
+
-0.6652036905288696,
|
| 2672 |
+
0.1890396922826767,
|
| 2673 |
+
0.03298724442720413,
|
| 2674 |
+
0.0
|
| 2675 |
+
],
|
| 2676 |
+
"min": [
|
| 2677 |
+
0.09922284632921219,
|
| 2678 |
+
-0.5180193781852722,
|
| 2679 |
+
0.13791072368621826,
|
| 2680 |
+
-2.635117530822754,
|
| 2681 |
+
-1.0734480619430542,
|
| 2682 |
+
-1.9282547235488892,
|
| 2683 |
+
0.0
|
| 2684 |
+
],
|
| 2685 |
+
"q01": [
|
| 2686 |
+
0.1756722891330719,
|
| 2687 |
+
-0.3077590811252594,
|
| 2688 |
+
0.235383919775486,
|
| 2689 |
+
-2.0908505964279174,
|
| 2690 |
+
-0.6191593289375306,
|
| 2691 |
+
-0.7488683319091797,
|
| 2692 |
+
0.0
|
| 2693 |
+
],
|
| 2694 |
+
"q99": [
|
| 2695 |
+
0.6136963081359863,
|
| 2696 |
+
0.33704194784164443,
|
| 2697 |
+
0.6681221985816956,
|
| 2698 |
+
0.7422861719131538,
|
| 2699 |
+
0.7955395007133507,
|
| 2700 |
+
0.740464625358582,
|
| 2701 |
+
0.0
|
| 2702 |
+
],
|
| 2703 |
+
"std": [
|
| 2704 |
+
0.12211652100086212,
|
| 2705 |
+
0.19378550350666046,
|
| 2706 |
+
0.10178236663341522,
|
| 2707 |
+
0.5725259184837341,
|
| 2708 |
+
0.29884573817253113,
|
| 2709 |
+
0.3259911835193634,
|
| 2710 |
+
0.0
|
| 2711 |
+
]
|
| 2712 |
+
},
|
| 2713 |
+
"num_trajectories": 1003,
|
| 2714 |
+
"num_transitions": 325699,
|
| 2715 |
+
"proprio": {
|
| 2716 |
+
"max": [
|
| 2717 |
+
0.0,
|
| 2718 |
+
0.0,
|
| 2719 |
+
0.0,
|
| 2720 |
+
0.0,
|
| 2721 |
+
0.0,
|
| 2722 |
+
0.0,
|
| 2723 |
+
0.0
|
| 2724 |
+
],
|
| 2725 |
+
"mean": [
|
| 2726 |
+
0.0,
|
| 2727 |
+
0.0,
|
| 2728 |
+
0.0,
|
| 2729 |
+
0.0,
|
| 2730 |
+
0.0,
|
| 2731 |
+
0.0,
|
| 2732 |
+
0.0
|
| 2733 |
+
],
|
| 2734 |
+
"min": [
|
| 2735 |
+
0.0,
|
| 2736 |
+
0.0,
|
| 2737 |
+
0.0,
|
| 2738 |
+
0.0,
|
| 2739 |
+
0.0,
|
| 2740 |
+
0.0,
|
| 2741 |
+
0.0
|
| 2742 |
+
],
|
| 2743 |
+
"q01": [
|
| 2744 |
+
0.0,
|
| 2745 |
+
0.0,
|
| 2746 |
+
0.0,
|
| 2747 |
+
0.0,
|
| 2748 |
+
0.0,
|
| 2749 |
+
0.0,
|
| 2750 |
+
0.0
|
| 2751 |
+
],
|
| 2752 |
+
"q99": [
|
| 2753 |
+
0.0,
|
| 2754 |
+
0.0,
|
| 2755 |
+
0.0,
|
| 2756 |
+
0.0,
|
| 2757 |
+
0.0,
|
| 2758 |
+
0.0,
|
| 2759 |
+
0.0
|
| 2760 |
+
],
|
| 2761 |
+
"std": [
|
| 2762 |
+
0.0,
|
| 2763 |
+
0.0,
|
| 2764 |
+
0.0,
|
| 2765 |
+
0.0,
|
| 2766 |
+
0.0,
|
| 2767 |
+
0.0,
|
| 2768 |
+
0.0
|
| 2769 |
+
]
|
| 2770 |
+
}
|
| 2771 |
+
},
|
| 2772 |
+
"ucsd_kitchen_dataset_converted_externally_to_rlds": {
|
| 2773 |
+
"action": {
|
| 2774 |
+
"mask": [
|
| 2775 |
+
true,
|
| 2776 |
+
true,
|
| 2777 |
+
true,
|
| 2778 |
+
true,
|
| 2779 |
+
true,
|
| 2780 |
+
true,
|
| 2781 |
+
false
|
| 2782 |
+
],
|
| 2783 |
+
"max": [
|
| 2784 |
+
678.0,
|
| 2785 |
+
400.0,
|
| 2786 |
+
507.0,
|
| 2787 |
+
180.00001525878906,
|
| 2788 |
+
6.000013828277588,
|
| 2789 |
+
116.99998474121094,
|
| 2790 |
+
1.0
|
| 2791 |
+
],
|
| 2792 |
+
"mean": [
|
| 2793 |
+
410.37567138671875,
|
| 2794 |
+
116.9518814086914,
|
| 2795 |
+
192.35032653808594,
|
| 2796 |
+
-121.22441864013672,
|
| 2797 |
+
-33.84893035888672,
|
| 2798 |
+
50.016136169433594,
|
| 2799 |
+
0.741813600063324
|
| 2800 |
+
],
|
| 2801 |
+
"min": [
|
| 2802 |
+
172.0,
|
| 2803 |
+
-166.0,
|
| 2804 |
+
-99.99999237060547,
|
| 2805 |
+
-180.00001525878906,
|
| 2806 |
+
-89.0,
|
| 2807 |
+
-96.00010681152344,
|
| 2808 |
+
0.0
|
| 2809 |
+
],
|
| 2810 |
+
"q01": [
|
| 2811 |
+
200.00001052856445,
|
| 2812 |
+
-102.31004211425781,
|
| 2813 |
+
-94.99993370056153,
|
| 2814 |
+
-180.00001525878906,
|
| 2815 |
+
-88.00001525878906,
|
| 2816 |
+
-38.999977111816406,
|
| 2817 |
+
0.0
|
| 2818 |
+
],
|
| 2819 |
+
"q99": [
|
| 2820 |
+
637.0,
|
| 2821 |
+
368.30999999999995,
|
| 2822 |
+
493.0,
|
| 2823 |
+
180.00001525878906,
|
| 2824 |
+
0.999983012676239,
|
| 2825 |
+
105.00001525878906,
|
| 2826 |
+
1.0
|
| 2827 |
+
],
|
| 2828 |
+
"std": [
|
| 2829 |
+
122.81494903564453,
|
| 2830 |
+
108.8009033203125,
|
| 2831 |
+
130.303466796875,
|
| 2832 |
+
116.28205108642578,
|
| 2833 |
+
27.621843338012695,
|
| 2834 |
+
41.02094650268555,
|
| 2835 |
+
0.43763357400894165
|
| 2836 |
+
]
|
| 2837 |
+
},
|
| 2838 |
+
"num_trajectories": 150,
|
| 2839 |
+
"num_transitions": 3970,
|
| 2840 |
+
"proprio": {
|
| 2841 |
+
"max": [
|
| 2842 |
+
0.0,
|
| 2843 |
+
0.0,
|
| 2844 |
+
0.0,
|
| 2845 |
+
0.0,
|
| 2846 |
+
0.0,
|
| 2847 |
+
0.0,
|
| 2848 |
+
0.0
|
| 2849 |
+
],
|
| 2850 |
+
"mean": [
|
| 2851 |
+
0.0,
|
| 2852 |
+
0.0,
|
| 2853 |
+
0.0,
|
| 2854 |
+
0.0,
|
| 2855 |
+
0.0,
|
| 2856 |
+
0.0,
|
| 2857 |
+
0.0
|
| 2858 |
+
],
|
| 2859 |
+
"min": [
|
| 2860 |
+
0.0,
|
| 2861 |
+
0.0,
|
| 2862 |
+
0.0,
|
| 2863 |
+
0.0,
|
| 2864 |
+
0.0,
|
| 2865 |
+
0.0,
|
| 2866 |
+
0.0
|
| 2867 |
+
],
|
| 2868 |
+
"q01": [
|
| 2869 |
+
0.0,
|
| 2870 |
+
0.0,
|
| 2871 |
+
0.0,
|
| 2872 |
+
0.0,
|
| 2873 |
+
0.0,
|
| 2874 |
+
0.0,
|
| 2875 |
+
0.0
|
| 2876 |
+
],
|
| 2877 |
+
"q99": [
|
| 2878 |
+
0.0,
|
| 2879 |
+
0.0,
|
| 2880 |
+
0.0,
|
| 2881 |
+
0.0,
|
| 2882 |
+
0.0,
|
| 2883 |
+
0.0,
|
| 2884 |
+
0.0
|
| 2885 |
+
],
|
| 2886 |
+
"std": [
|
| 2887 |
+
0.0,
|
| 2888 |
+
0.0,
|
| 2889 |
+
0.0,
|
| 2890 |
+
0.0,
|
| 2891 |
+
0.0,
|
| 2892 |
+
0.0,
|
| 2893 |
+
0.0
|
| 2894 |
+
]
|
| 2895 |
+
}
|
| 2896 |
+
},
|
| 2897 |
+
"utaustin_mutex": {
|
| 2898 |
+
"action": {
|
| 2899 |
+
"mask": [
|
| 2900 |
+
true,
|
| 2901 |
+
true,
|
| 2902 |
+
true,
|
| 2903 |
+
true,
|
| 2904 |
+
true,
|
| 2905 |
+
true,
|
| 2906 |
+
false
|
| 2907 |
+
],
|
| 2908 |
+
"max": [
|
| 2909 |
+
1.0,
|
| 2910 |
+
1.0,
|
| 2911 |
+
1.0,
|
| 2912 |
+
0.375,
|
| 2913 |
+
0.375,
|
| 2914 |
+
0.375,
|
| 2915 |
+
1.0
|
| 2916 |
+
],
|
| 2917 |
+
"mean": [
|
| 2918 |
+
0.06176406890153885,
|
| 2919 |
+
-0.005005486309528351,
|
| 2920 |
+
0.10216785222291946,
|
| 2921 |
+
-0.03314131125807762,
|
| 2922 |
+
0.013895004987716675,
|
| 2923 |
+
-0.011317633092403412,
|
| 2924 |
+
0.5038976669311523
|
| 2925 |
+
],
|
| 2926 |
+
"min": [
|
| 2927 |
+
-1.0,
|
| 2928 |
+
-1.0,
|
| 2929 |
+
-1.0,
|
| 2930 |
+
-0.375,
|
| 2931 |
+
-0.375,
|
| 2932 |
+
-0.375,
|
| 2933 |
+
0.0
|
| 2934 |
+
],
|
| 2935 |
+
"q01": [
|
| 2936 |
+
-0.4285714328289032,
|
| 2937 |
+
-0.9800000190734863,
|
| 2938 |
+
-0.5571428537368774,
|
| 2939 |
+
-0.375,
|
| 2940 |
+
-0.15642857551574707,
|
| 2941 |
+
-0.335357129573822,
|
| 2942 |
+
0.0
|
| 2943 |
+
],
|
| 2944 |
+
"q99": [
|
| 2945 |
+
0.5914285778999329,
|
| 2946 |
+
0.9714285731315613,
|
| 2947 |
+
1.0,
|
| 2948 |
+
0.3278571367263794,
|
| 2949 |
+
0.207857146859169,
|
| 2950 |
+
0.25607141852378845,
|
| 2951 |
+
1.0
|
| 2952 |
+
],
|
| 2953 |
+
"std": [
|
| 2954 |
+
0.1875014752149582,
|
| 2955 |
+
0.4468473494052887,
|
| 2956 |
+
0.3792876601219177,
|
| 2957 |
+
0.14097853004932404,
|
| 2958 |
+
0.06453701853752136,
|
| 2959 |
+
0.11765272170305252,
|
| 2960 |
+
0.501045286655426
|
| 2961 |
+
]
|
| 2962 |
+
},
|
| 2963 |
+
"num_trajectories": 1500,
|
| 2964 |
+
"num_transitions": 361883,
|
| 2965 |
+
"proprio": {
|
| 2966 |
+
"max": [
|
| 2967 |
+
0.0,
|
| 2968 |
+
0.0,
|
| 2969 |
+
0.0,
|
| 2970 |
+
0.0,
|
| 2971 |
+
0.0,
|
| 2972 |
+
0.0,
|
| 2973 |
+
0.0
|
| 2974 |
+
],
|
| 2975 |
+
"mean": [
|
| 2976 |
+
0.0,
|
| 2977 |
+
0.0,
|
| 2978 |
+
0.0,
|
| 2979 |
+
0.0,
|
| 2980 |
+
0.0,
|
| 2981 |
+
0.0,
|
| 2982 |
+
0.0
|
| 2983 |
+
],
|
| 2984 |
+
"min": [
|
| 2985 |
+
0.0,
|
| 2986 |
+
0.0,
|
| 2987 |
+
0.0,
|
| 2988 |
+
0.0,
|
| 2989 |
+
0.0,
|
| 2990 |
+
0.0,
|
| 2991 |
+
0.0
|
| 2992 |
+
],
|
| 2993 |
+
"q01": [
|
| 2994 |
+
0.0,
|
| 2995 |
+
0.0,
|
| 2996 |
+
0.0,
|
| 2997 |
+
0.0,
|
| 2998 |
+
0.0,
|
| 2999 |
+
0.0,
|
| 3000 |
+
0.0
|
| 3001 |
+
],
|
| 3002 |
+
"q99": [
|
| 3003 |
+
0.0,
|
| 3004 |
+
0.0,
|
| 3005 |
+
0.0,
|
| 3006 |
+
0.0,
|
| 3007 |
+
0.0,
|
| 3008 |
+
0.0,
|
| 3009 |
+
0.0
|
| 3010 |
+
],
|
| 3011 |
+
"std": [
|
| 3012 |
+
0.0,
|
| 3013 |
+
0.0,
|
| 3014 |
+
0.0,
|
| 3015 |
+
0.0,
|
| 3016 |
+
0.0,
|
| 3017 |
+
0.0,
|
| 3018 |
+
0.0
|
| 3019 |
+
]
|
| 3020 |
+
}
|
| 3021 |
+
},
|
| 3022 |
+
"viola": {
|
| 3023 |
+
"action": {
|
| 3024 |
+
"mask": [
|
| 3025 |
+
true,
|
| 3026 |
+
true,
|
| 3027 |
+
true,
|
| 3028 |
+
true,
|
| 3029 |
+
true,
|
| 3030 |
+
true,
|
| 3031 |
+
false
|
| 3032 |
+
],
|
| 3033 |
+
"max": [
|
| 3034 |
+
1.0,
|
| 3035 |
+
1.0,
|
| 3036 |
+
1.0,
|
| 3037 |
+
0.375,
|
| 3038 |
+
0.36321428418159485,
|
| 3039 |
+
0.375,
|
| 3040 |
+
1.0
|
| 3041 |
+
],
|
| 3042 |
+
"mean": [
|
| 3043 |
+
0.04761844128370285,
|
| 3044 |
+
-0.029204415157437325,
|
| 3045 |
+
0.05586736649274826,
|
| 3046 |
+
-0.002618510741740465,
|
| 3047 |
+
0.006867344491183758,
|
| 3048 |
+
-0.01682133786380291,
|
| 3049 |
+
0.7323777675628662
|
| 3050 |
+
],
|
| 3051 |
+
"min": [
|
| 3052 |
+
-1.0,
|
| 3053 |
+
-1.0,
|
| 3054 |
+
-1.0,
|
| 3055 |
+
-0.375,
|
| 3056 |
+
-0.375,
|
| 3057 |
+
-0.375,
|
| 3058 |
+
0.0
|
| 3059 |
+
],
|
| 3060 |
+
"q01": [
|
| 3061 |
+
-0.9628571271896362,
|
| 3062 |
+
-1.0,
|
| 3063 |
+
-1.0,
|
| 3064 |
+
-0.26249998807907104,
|
| 3065 |
+
-0.21321429312229156,
|
| 3066 |
+
-0.3385714292526245,
|
| 3067 |
+
0.0
|
| 3068 |
+
],
|
| 3069 |
+
"q99": [
|
| 3070 |
+
0.9114285707473755,
|
| 3071 |
+
0.868571400642395,
|
| 3072 |
+
1.0,
|
| 3073 |
+
0.2817857265472412,
|
| 3074 |
+
0.2239285707473755,
|
| 3075 |
+
0.3557142913341522,
|
| 3076 |
+
1.0
|
| 3077 |
+
],
|
| 3078 |
+
"std": [
|
| 3079 |
+
0.39157867431640625,
|
| 3080 |
+
0.4076525568962097,
|
| 3081 |
+
0.40077948570251465,
|
| 3082 |
+
0.10023996233940125,
|
| 3083 |
+
0.0844319611787796,
|
| 3084 |
+
0.10375042259693146,
|
| 3085 |
+
0.44260647892951965
|
| 3086 |
+
]
|
| 3087 |
+
},
|
| 3088 |
+
"num_trajectories": 150,
|
| 3089 |
+
"num_transitions": 76324,
|
| 3090 |
+
"proprio": {
|
| 3091 |
+
"max": [
|
| 3092 |
+
0.0,
|
| 3093 |
+
0.0,
|
| 3094 |
+
0.0,
|
| 3095 |
+
0.0,
|
| 3096 |
+
0.0,
|
| 3097 |
+
0.0,
|
| 3098 |
+
0.0
|
| 3099 |
+
],
|
| 3100 |
+
"mean": [
|
| 3101 |
+
0.0,
|
| 3102 |
+
0.0,
|
| 3103 |
+
0.0,
|
| 3104 |
+
0.0,
|
| 3105 |
+
0.0,
|
| 3106 |
+
0.0,
|
| 3107 |
+
0.0
|
| 3108 |
+
],
|
| 3109 |
+
"min": [
|
| 3110 |
+
0.0,
|
| 3111 |
+
0.0,
|
| 3112 |
+
0.0,
|
| 3113 |
+
0.0,
|
| 3114 |
+
0.0,
|
| 3115 |
+
0.0,
|
| 3116 |
+
0.0
|
| 3117 |
+
],
|
| 3118 |
+
"q01": [
|
| 3119 |
+
0.0,
|
| 3120 |
+
0.0,
|
| 3121 |
+
0.0,
|
| 3122 |
+
0.0,
|
| 3123 |
+
0.0,
|
| 3124 |
+
0.0,
|
| 3125 |
+
0.0
|
| 3126 |
+
],
|
| 3127 |
+
"q99": [
|
| 3128 |
+
0.0,
|
| 3129 |
+
0.0,
|
| 3130 |
+
0.0,
|
| 3131 |
+
0.0,
|
| 3132 |
+
0.0,
|
| 3133 |
+
0.0,
|
| 3134 |
+
0.0
|
| 3135 |
+
],
|
| 3136 |
+
"std": [
|
| 3137 |
+
0.0,
|
| 3138 |
+
0.0,
|
| 3139 |
+
0.0,
|
| 3140 |
+
0.0,
|
| 3141 |
+
0.0,
|
| 3142 |
+
0.0,
|
| 3143 |
+
0.0
|
| 3144 |
+
]
|
| 3145 |
+
}
|
| 3146 |
+
}
|
| 3147 |
+
},
|
| 3148 |
+
"output_projector_states": false,
|
| 3149 |
+
"pad_to_multiple_of": 64,
|
| 3150 |
+
"pad_token_id": 32000,
|
| 3151 |
+
"text_config": {
|
| 3152 |
+
"bos_token_id": 151643,
|
| 3153 |
+
"eos_token_id": 151643,
|
| 3154 |
+
"hidden_size": 896,
|
| 3155 |
+
"intermediate_size": 4864,
|
| 3156 |
+
"max_position_embeddings": 32768,
|
| 3157 |
+
"max_window_layers": 24,
|
| 3158 |
+
"model_type": "qwen2",
|
| 3159 |
+
"num_attention_heads": 14,
|
| 3160 |
+
"num_hidden_layers": 24,
|
| 3161 |
+
"num_key_value_heads": 2,
|
| 3162 |
+
"rope_theta": 1000000.0,
|
| 3163 |
+
"sliding_window": 32768,
|
| 3164 |
+
"tie_word_embeddings": true,
|
| 3165 |
+
"torch_dtype": "bfloat16",
|
| 3166 |
+
"use_mrope": false,
|
| 3167 |
+
"use_sliding_window": false,
|
| 3168 |
+
"vocab_size": 151936
|
| 3169 |
+
},
|
| 3170 |
+
"timm_model_ids": [
|
| 3171 |
+
"vit_large_patch14_reg4_dinov2.lvd142m",
|
| 3172 |
+
"vit_so400m_patch14_siglip_224"
|
| 3173 |
+
],
|
| 3174 |
+
"timm_override_act_layers": [
|
| 3175 |
+
null,
|
| 3176 |
+
null
|
| 3177 |
+
],
|
| 3178 |
+
"torch_dtype": "bfloat16",
|
| 3179 |
+
"transformers_version": "4.40.1",
|
| 3180 |
+
"use_fused_vision_backbone": true,
|
| 3181 |
+
"vision_backbone_id": "dinosiglip-vit-so-224px"
|
| 3182 |
+
}
|
configuration_prismatic.py
ADDED
|
@@ -0,0 +1,144 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
configuration_prismatic.py
|
| 3 |
+
|
| 4 |
+
HuggingFace-style configuration definition for Prismatic VLMs, inheriting from `transformers.PretrainedConfig`.
|
| 5 |
+
Default configuration specifies `siglip-224px+7b`.
|
| 6 |
+
"""
|
| 7 |
+
|
| 8 |
+
from typing import Any, Dict, List, Optional
|
| 9 |
+
|
| 10 |
+
from transformers import PretrainedConfig
|
| 11 |
+
from transformers.models.auto import CONFIG_MAPPING
|
| 12 |
+
|
| 13 |
+
# === Utilities for Mapping Prismatic names to HF names ===
|
| 14 |
+
# fmt: off
|
| 15 |
+
VISION_BACKBONE_TO_RESOLUTION: Dict[str, List[int]] = {
|
| 16 |
+
"clip-vit-l": [224], "siglip-vit-so400m": [224], "dinov2-vit-l": [224], "in1k-vit-l": [224],
|
| 17 |
+
|
| 18 |
+
"clip-vit-l-336px": [336],
|
| 19 |
+
"siglip-vit-so400m-384px": [384],
|
| 20 |
+
|
| 21 |
+
"dinoclip-vit-l-336px": [336, 336],
|
| 22 |
+
"dinosiglip-vit-so-224px": [224, 224],
|
| 23 |
+
"dinosiglip-vit-so-384px": [384, 384],
|
| 24 |
+
}
|
| 25 |
+
VISION_BACKBONE_TO_TIMM_ID: Dict[str, List[str]] = {
|
| 26 |
+
"clip-vit-l": ["vit_large_patch14_clip_224.openai"],
|
| 27 |
+
"clip-vit-l-336px": ["vit_large_patch14_clip_336.openai"],
|
| 28 |
+
|
| 29 |
+
"dinov2-vit-l": ["vit_large_patch14_reg4_dinov2.lvd142m"],
|
| 30 |
+
"in1k-vit-l": ["vit_large_patch16_224.augreg_in21k_ft_in1k"],
|
| 31 |
+
|
| 32 |
+
"siglip-vit-so400m": ["vit_so400m_patch14_siglip_224"],
|
| 33 |
+
"siglip-vit-so400m-384px": ["vit_so400m_patch14_siglip_384"],
|
| 34 |
+
|
| 35 |
+
"dinoclip-vit-l-336px": ["vit_large_patch14_reg4_dinov2.lvd142m", "vit_large_patch14_clip_336.openai"],
|
| 36 |
+
"dinosiglip-vit-so-224px": ["vit_large_patch14_reg4_dinov2.lvd142m", "vit_so400m_patch14_siglip_224"],
|
| 37 |
+
"dinosiglip-vit-so-384px": ["vit_large_patch14_reg4_dinov2.lvd142m", "vit_so400m_patch14_siglip_384"],
|
| 38 |
+
}
|
| 39 |
+
TIMM_OVERRIDE_ACT_LAYER: Dict[str, List[Optional[str]]] = {
|
| 40 |
+
"clip-vit-l": ["quick_gelu"], "clip-vit-l-336px": ["quick_gelu"],
|
| 41 |
+
"dinov2-vit-l": [None], "in1k-vit-l": [None],
|
| 42 |
+
"siglip-vit-so400m": [None], "siglip-vit-so400m-384px": [None],
|
| 43 |
+
"dinoclip-vit-l-336px": [None, "quick_gelu"],
|
| 44 |
+
"dinosiglip-vit-so-224px": [None, None], "dinosiglip-vit-so-384px": [None, None]
|
| 45 |
+
}
|
| 46 |
+
|
| 47 |
+
LLM_BACKBONE_TO_HF_PATH = {
|
| 48 |
+
"llama2-7b-pure": "meta-llama/Llama-2-7b-hf", "llama2-13b-pure": "meta-llama/Llama-2-13b-hf",
|
| 49 |
+
"llama2-7b-chat": "meta-llama/Llama-2-7b-chat-hf", "llama2-13b-chat": "meta-llama/Llama-2-13b-chat-hf",
|
| 50 |
+
|
| 51 |
+
"vicuna-v15-7b": "lmsys/vicuna-7b-v1.5", "vicuna-v15-13b": "lmsys/vicuna-13b-v1.5",
|
| 52 |
+
|
| 53 |
+
"mistral-v0.1-7b-pure": "mistralai/Mistral-7B-v0.1",
|
| 54 |
+
"mistral-v0.1-7b-instruct": "mistralai/Mistral-7B-Instruct-v0.1",
|
| 55 |
+
|
| 56 |
+
"phi-2-3b": "microsoft/phi-2",
|
| 57 |
+
"qwen25-0_5b-extra": "Qwen/Qwen2.5-0.5B", "qwen25-0_5b-pure": "Qwen/Qwen2.5-0.5B"
|
| 58 |
+
|
| 59 |
+
|
| 60 |
+
}
|
| 61 |
+
LLM_BACKBONE_TO_HF_METACLASS = {
|
| 62 |
+
"llama2-7b-pure": "llama", "llama2-13b-pure": "llama", "llama2-7b-chat": "llama", "llama2-13b-chat": "llama",
|
| 63 |
+
"vicuna-v15-7b": "llama", "vicuna-v15-13b": "llama",
|
| 64 |
+
|
| 65 |
+
"mistral-v0.1-7b-pure": "mistral", "mistral-v0.1-7b-instruct": "mistral",
|
| 66 |
+
|
| 67 |
+
"phi-2-3b": "phi",
|
| 68 |
+
"qwen25-0_5b-extra": "qwen2" ,"qwen25-0_5b-pure": "qwen2"
|
| 69 |
+
}
|
| 70 |
+
|
| 71 |
+
VALID_VISION_BACKBONES = set(VISION_BACKBONE_TO_RESOLUTION.keys())
|
| 72 |
+
VALID_LLM_BACKBONES = set(LLM_BACKBONE_TO_HF_PATH)
|
| 73 |
+
# fmt: on
|
| 74 |
+
|
| 75 |
+
|
| 76 |
+
class PrismaticConfig(PretrainedConfig):
|
| 77 |
+
model_type: str = "prismatic"
|
| 78 |
+
is_composition: bool = False
|
| 79 |
+
|
| 80 |
+
def __init__(
|
| 81 |
+
self,
|
| 82 |
+
vision_backbone_id: str = "siglip-vit-so400m",
|
| 83 |
+
llm_backbone_id: str = "vicuna-v15-7b",
|
| 84 |
+
arch_specifier: str = "no-align+gelu-mlp",
|
| 85 |
+
use_fused_vision_backbone: Optional[bool] = None,
|
| 86 |
+
image_resize_strategy: str = "letterbox",
|
| 87 |
+
text_config: Optional[Dict[str, Any]] = None,
|
| 88 |
+
llm_max_length: int = 2048,
|
| 89 |
+
pad_token_id: int = 32000,
|
| 90 |
+
pad_to_multiple_of: int = 64,
|
| 91 |
+
output_projector_states: bool = False,
|
| 92 |
+
**kwargs: str,
|
| 93 |
+
) -> None:
|
| 94 |
+
if vision_backbone_id not in VALID_VISION_BACKBONES:
|
| 95 |
+
raise ValueError(f"Vision backbone `{vision_backbone_id}` not in {VALID_VISION_BACKBONES = }")
|
| 96 |
+
|
| 97 |
+
if llm_backbone_id not in VALID_LLM_BACKBONES:
|
| 98 |
+
raise ValueError(f"LLM backbone `{llm_backbone_id}` not in {VALID_LLM_BACKBONES = }")
|
| 99 |
+
|
| 100 |
+
# Set Prismatic Configuration Fields
|
| 101 |
+
self.vision_backbone_id = vision_backbone_id
|
| 102 |
+
self.llm_backbone_id = llm_backbone_id
|
| 103 |
+
self.arch_specifier = arch_specifier
|
| 104 |
+
self.output_projector_states = output_projector_states
|
| 105 |
+
|
| 106 |
+
# [Contract] All vision backbone parameters are lists =>> supports fused backbones with different preprocessing
|
| 107 |
+
self.use_fused_vision_backbone = (
|
| 108 |
+
use_fused_vision_backbone
|
| 109 |
+
if use_fused_vision_backbone is not None
|
| 110 |
+
else any(self.vision_backbone_id.startswith(v) for v in ["dinoclip", "dinosiglip"])
|
| 111 |
+
)
|
| 112 |
+
|
| 113 |
+
self.timm_model_ids = VISION_BACKBONE_TO_TIMM_ID[self.vision_backbone_id]
|
| 114 |
+
self.timm_override_act_layers = TIMM_OVERRIDE_ACT_LAYER[self.vision_backbone_id]
|
| 115 |
+
self.image_sizes = VISION_BACKBONE_TO_RESOLUTION[self.vision_backbone_id]
|
| 116 |
+
self.image_resize_strategy = image_resize_strategy
|
| 117 |
+
|
| 118 |
+
self.hf_llm_id = LLM_BACKBONE_TO_HF_PATH[self.llm_backbone_id]
|
| 119 |
+
self.llm_max_length = llm_max_length
|
| 120 |
+
self.pad_token_id, self.pad_to_multiple_of = pad_token_id, pad_to_multiple_of
|
| 121 |
+
|
| 122 |
+
# [IMPORTANT] HF Utilities actually look for a `text_config` field... we need to use that specific naming!
|
| 123 |
+
self.text_config = (
|
| 124 |
+
CONFIG_MAPPING[LLM_BACKBONE_TO_HF_METACLASS[self.llm_backbone_id]](**text_config)
|
| 125 |
+
if text_config is not None
|
| 126 |
+
else CONFIG_MAPPING[LLM_BACKBONE_TO_HF_METACLASS[self.llm_backbone_id]]()
|
| 127 |
+
)
|
| 128 |
+
|
| 129 |
+
# Dispatch **kwargs to super() =>> note that `pad_token_id` collides, so we pass it in here as well...
|
| 130 |
+
super().__init__(pad_token_id=pad_token_id, **kwargs)
|
| 131 |
+
|
| 132 |
+
|
| 133 |
+
class OpenVLAConfig(PrismaticConfig):
|
| 134 |
+
model_type: str = "openvla"
|
| 135 |
+
|
| 136 |
+
def __init__(
|
| 137 |
+
self,
|
| 138 |
+
norm_stats: Optional[Dict[str, Dict[str, Dict[str, Dict[str, List[float]]]]]] = None,
|
| 139 |
+
n_action_bins: int = 256,
|
| 140 |
+
**kwargs: str,
|
| 141 |
+
) -> None:
|
| 142 |
+
self.norm_stats, self.n_action_bins = norm_stats, n_action_bins
|
| 143 |
+
|
| 144 |
+
super().__init__(**kwargs)
|
dataset_statistics.json
ADDED
|
@@ -0,0 +1,133 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"libero_goal_no_noops": {
|
| 3 |
+
"action": {
|
| 4 |
+
"mean": [
|
| 5 |
+
0.04721052572131157,
|
| 6 |
+
0.028835246339440346,
|
| 7 |
+
-0.1485840231180191,
|
| 8 |
+
-0.0025010062381625175,
|
| 9 |
+
0.026408178731799126,
|
| 10 |
+
0.027379808947443962,
|
| 11 |
+
0.6299911737442017
|
| 12 |
+
],
|
| 13 |
+
"std": [
|
| 14 |
+
0.3968801498413086,
|
| 15 |
+
0.3473387360572815,
|
| 16 |
+
0.49239858984947205,
|
| 17 |
+
0.055331431329250336,
|
| 18 |
+
0.07844757288694382,
|
| 19 |
+
0.10008802264928818,
|
| 20 |
+
0.48270025849342346
|
| 21 |
+
],
|
| 22 |
+
"max": [
|
| 23 |
+
0.9375,
|
| 24 |
+
0.9375,
|
| 25 |
+
0.9375,
|
| 26 |
+
0.3557142913341522,
|
| 27 |
+
0.375,
|
| 28 |
+
0.375,
|
| 29 |
+
1.0
|
| 30 |
+
],
|
| 31 |
+
"min": [
|
| 32 |
+
-0.9375,
|
| 33 |
+
-0.9375,
|
| 34 |
+
-0.9375,
|
| 35 |
+
-0.2582142949104309,
|
| 36 |
+
-0.375,
|
| 37 |
+
-0.2871428430080414,
|
| 38 |
+
0.0
|
| 39 |
+
],
|
| 40 |
+
"q01": [
|
| 41 |
+
-0.8785714507102966,
|
| 42 |
+
-0.7553571462631226,
|
| 43 |
+
-0.9375,
|
| 44 |
+
-0.1510714292526245,
|
| 45 |
+
-0.1639285683631897,
|
| 46 |
+
-0.13777500048279764,
|
| 47 |
+
0.0
|
| 48 |
+
],
|
| 49 |
+
"q99": [
|
| 50 |
+
0.9375,
|
| 51 |
+
0.9107142686843872,
|
| 52 |
+
0.9375,
|
| 53 |
+
0.20357142388820648,
|
| 54 |
+
0.26357144117355347,
|
| 55 |
+
0.375,
|
| 56 |
+
1.0
|
| 57 |
+
],
|
| 58 |
+
"mask": [
|
| 59 |
+
true,
|
| 60 |
+
true,
|
| 61 |
+
true,
|
| 62 |
+
true,
|
| 63 |
+
true,
|
| 64 |
+
true,
|
| 65 |
+
false
|
| 66 |
+
]
|
| 67 |
+
},
|
| 68 |
+
"proprio": {
|
| 69 |
+
"mean": [
|
| 70 |
+
-0.09923473745584488,
|
| 71 |
+
0.013597904704511166,
|
| 72 |
+
1.0694637298583984,
|
| 73 |
+
2.82898211479187,
|
| 74 |
+
0.30799180269241333,
|
| 75 |
+
-0.274286687374115,
|
| 76 |
+
0.028092455118894577,
|
| 77 |
+
-0.027339335530996323
|
| 78 |
+
],
|
| 79 |
+
"std": [
|
| 80 |
+
0.11653962731361389,
|
| 81 |
+
0.11478105187416077,
|
| 82 |
+
0.10487838834524155,
|
| 83 |
+
0.5570293664932251,
|
| 84 |
+
0.7221656441688538,
|
| 85 |
+
0.36479514837265015,
|
| 86 |
+
0.01507475133985281,
|
| 87 |
+
0.014990941621363163
|
| 88 |
+
],
|
| 89 |
+
"max": [
|
| 90 |
+
0.13579000532627106,
|
| 91 |
+
0.33316105604171753,
|
| 92 |
+
1.3660105466842651,
|
| 93 |
+
3.473310708999634,
|
| 94 |
+
2.6688623428344727,
|
| 95 |
+
0.8255361318588257,
|
| 96 |
+
0.04233968257904053,
|
| 97 |
+
0.0010111660230904818
|
| 98 |
+
],
|
| 99 |
+
"min": [
|
| 100 |
+
-0.46141114830970764,
|
| 101 |
+
-0.30129560828208923,
|
| 102 |
+
0.9083037972450256,
|
| 103 |
+
0.35277295112609863,
|
| 104 |
+
-1.4858465194702148,
|
| 105 |
+
-1.5227035284042358,
|
| 106 |
+
-0.0013586411951109767,
|
| 107 |
+
-0.042040832340717316
|
| 108 |
+
],
|
| 109 |
+
"q01": [
|
| 110 |
+
-0.42401049643754957,
|
| 111 |
+
-0.27338370531797407,
|
| 112 |
+
0.911226047873497,
|
| 113 |
+
1.3085840785503386,
|
| 114 |
+
-0.691297555565834,
|
| 115 |
+
-1.130668159723282,
|
| 116 |
+
0.0016738151130266487,
|
| 117 |
+
-0.040336399003863335
|
| 118 |
+
],
|
| 119 |
+
"q99": [
|
| 120 |
+
0.08990443304181095,
|
| 121 |
+
0.26473945528268716,
|
| 122 |
+
1.2910678112506866,
|
| 123 |
+
3.2425890421867365,
|
| 124 |
+
2.3376442337036116,
|
| 125 |
+
0.4659483411908149,
|
| 126 |
+
0.040610933862626555,
|
| 127 |
+
-0.0015016929572448147
|
| 128 |
+
]
|
| 129 |
+
},
|
| 130 |
+
"num_transitions": 52042,
|
| 131 |
+
"num_trajectories": 428
|
| 132 |
+
}
|
| 133 |
+
}
|
generation_config.json
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_from_model_config": true,
|
| 3 |
+
"bos_token_id": 151643,
|
| 4 |
+
"eos_token_id": 151643,
|
| 5 |
+
"pad_token_id": 32000,
|
| 6 |
+
"transformers_version": "4.40.1"
|
| 7 |
+
}
|
merges.txt
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
model.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:946a8e8ed8174db9c8294bad269c230982e1f636d9c76847e4410e1bc8810274
|
| 3 |
+
size 2505232584
|
modeling_prismatic.py
ADDED
|
@@ -0,0 +1,1499 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
modeling_prismatic.py
|
| 3 |
+
|
| 4 |
+
Core HuggingFace-style PrismaticPreTrainedModel and PrismaticForConditionalGeneration class definitions.
|
| 5 |
+
Inherits from the default `transformers.PretrainedModel`. Meant to be standalone and self-contained,
|
| 6 |
+
but exactly replicate the logic in `prismatic.models.vlms.prismatic.py`.
|
| 7 |
+
"""
|
| 8 |
+
|
| 9 |
+
import logging
|
| 10 |
+
from dataclasses import dataclass
|
| 11 |
+
from functools import partial
|
| 12 |
+
from typing import Any, Callable, ClassVar, Dict, List, Optional, Tuple, Union
|
| 13 |
+
|
| 14 |
+
import numpy as np
|
| 15 |
+
import timm
|
| 16 |
+
import tokenizers
|
| 17 |
+
import torch
|
| 18 |
+
import torch.nn as nn
|
| 19 |
+
import transformers
|
| 20 |
+
from timm.models.vision_transformer import LayerScale
|
| 21 |
+
from transformers import AutoModelForCausalLM, PretrainedConfig, PreTrainedModel
|
| 22 |
+
from transformers.modeling_outputs import ModelOutput
|
| 23 |
+
|
| 24 |
+
from prismatic.training.train_utils import (
|
| 25 |
+
get_current_action_mask,
|
| 26 |
+
get_next_actions_mask,
|
| 27 |
+
)
|
| 28 |
+
from prismatic.vla.constants import (
|
| 29 |
+
ACTION_DIM,
|
| 30 |
+
ACTION_PROPRIO_NORMALIZATION_TYPE,
|
| 31 |
+
ACTION_TOKEN_BEGIN_IDX,
|
| 32 |
+
IGNORE_INDEX,
|
| 33 |
+
NUM_ACTIONS_CHUNK,
|
| 34 |
+
STOP_INDEX,
|
| 35 |
+
NormalizationType,
|
| 36 |
+
NUM_TOKENS
|
| 37 |
+
)
|
| 38 |
+
|
| 39 |
+
from .configuration_prismatic import OpenVLAConfig, PrismaticConfig
|
| 40 |
+
|
| 41 |
+
|
| 42 |
+
|
| 43 |
+
# Set up logger
|
| 44 |
+
logger = logging.getLogger(__name__)
|
| 45 |
+
|
| 46 |
+
|
| 47 |
+
# === Utility Functions for Monkey-Patching ===
|
| 48 |
+
def unpack_tuple(fn: Callable[[Any], Tuple[Any]]) -> Callable[[Any], Any]:
|
| 49 |
+
def wrapper(*args: Any, **kwargs: Any) -> Any:
|
| 50 |
+
result = fn(*args, **kwargs)
|
| 51 |
+
return result[0] if isinstance(result, tuple) else result
|
| 52 |
+
|
| 53 |
+
return wrapper
|
| 54 |
+
|
| 55 |
+
|
| 56 |
+
# HF Transformers overwrites parameters with names containing `gamma`; we're going to patch VisionBackbone.LayerScale.
|
| 57 |
+
# =>> TIMM :: https://github.com/huggingface/pytorch-image-models/blob/main/timm/models/vision_transformer.py#L109
|
| 58 |
+
# =>> Transformers :: https://github.com/huggingface/transformers/blob/main/src/transformers/modeling_utils.py#L3960
|
| 59 |
+
def _ls_new_forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 60 |
+
return x.mul_(self.scale_factor) if self.inplace else x * self.scale_factor
|
| 61 |
+
|
| 62 |
+
|
| 63 |
+
def ls_apply_patch(ls_module: LayerScale):
|
| 64 |
+
ls_module.scale_factor = nn.Parameter(ls_module.gamma.clone())
|
| 65 |
+
ls_module.forward = _ls_new_forward.__get__(ls_module, LayerScale)
|
| 66 |
+
del ls_module.gamma
|
| 67 |
+
|
| 68 |
+
|
| 69 |
+
# === Prismatic Vision Backbone (nn.Module) Definitions (w/ Fused Backbone Support) ===
|
| 70 |
+
class PrismaticVisionBackbone(nn.Module):
|
| 71 |
+
"""
|
| 72 |
+
Vision backbone for Prismatic models that handles image feature extraction.
|
| 73 |
+
|
| 74 |
+
Supports both single backbone (e.g., SigLIP) and fused backbone (e.g., SigLIP + DINOv2) configurations.
|
| 75 |
+
For fused backbones, features from both models are concatenated along the feature dimension.
|
| 76 |
+
"""
|
| 77 |
+
|
| 78 |
+
def __init__(
|
| 79 |
+
self,
|
| 80 |
+
use_fused_vision_backbone: bool,
|
| 81 |
+
image_sizes: List[int],
|
| 82 |
+
timm_model_ids: List[str],
|
| 83 |
+
timm_override_act_layers: List[Optional[str]],
|
| 84 |
+
) -> None:
|
| 85 |
+
"""
|
| 86 |
+
Initialize the vision backbone.
|
| 87 |
+
|
| 88 |
+
Args:
|
| 89 |
+
use_fused_vision_backbone: Whether to use two backbones and fuse their features
|
| 90 |
+
image_sizes: List of image sizes for each backbone
|
| 91 |
+
timm_model_ids: List of TIMM model IDs to use for each backbone
|
| 92 |
+
timm_override_act_layers: List of activation layer overrides for each backbone
|
| 93 |
+
"""
|
| 94 |
+
super().__init__()
|
| 95 |
+
self.use_fused_vision_backbone = use_fused_vision_backbone
|
| 96 |
+
self.num_images_in_input = 1 # Default value, can be overridden later
|
| 97 |
+
|
| 98 |
+
# Validate number of (fused) vision backbones
|
| 99 |
+
if len(timm_model_ids) > 2:
|
| 100 |
+
raise ValueError("Prismatic models only support up to 2 (fused) vision backbones!")
|
| 101 |
+
|
| 102 |
+
# Create primary featurizer
|
| 103 |
+
self.featurizer = self._create_featurizer(
|
| 104 |
+
model_id=timm_model_ids[0], img_size=image_sizes[0], act_layer=timm_override_act_layers[0]
|
| 105 |
+
)
|
| 106 |
+
self.embed_dim = self.featurizer.embed_dim
|
| 107 |
+
|
| 108 |
+
# Create secondary featurizer if using fused backbone
|
| 109 |
+
if self.use_fused_vision_backbone:
|
| 110 |
+
self.fused_featurizer = self._create_featurizer(
|
| 111 |
+
model_id=timm_model_ids[1], img_size=image_sizes[1], act_layer=timm_override_act_layers[1]
|
| 112 |
+
)
|
| 113 |
+
self.embed_dim += self.fused_featurizer.embed_dim
|
| 114 |
+
|
| 115 |
+
# Patch LayerScale modules for HF compatibility
|
| 116 |
+
self._patch_layer_scales()
|
| 117 |
+
|
| 118 |
+
def _create_featurizer(self, model_id: str, img_size: int, act_layer: Optional[str]) -> nn.Module:
|
| 119 |
+
"""
|
| 120 |
+
Create a TIMM-based featurizer model with appropriate configurations.
|
| 121 |
+
|
| 122 |
+
Args:
|
| 123 |
+
model_id: The TIMM model ID to load
|
| 124 |
+
img_size: Input image size for the model
|
| 125 |
+
act_layer: Override for the activation layer type
|
| 126 |
+
|
| 127 |
+
Returns:
|
| 128 |
+
A configured featurizer model
|
| 129 |
+
"""
|
| 130 |
+
featurizer = timm.create_model(
|
| 131 |
+
model_id,
|
| 132 |
+
pretrained=False,
|
| 133 |
+
num_classes=0,
|
| 134 |
+
img_size=img_size,
|
| 135 |
+
act_layer=act_layer,
|
| 136 |
+
)
|
| 137 |
+
|
| 138 |
+
# Monkey-patch the forward function to extract the second-to-last layer features
|
| 139 |
+
num_blocks = len(featurizer.blocks)
|
| 140 |
+
featurizer.forward = unpack_tuple(partial(featurizer.get_intermediate_layers, n={num_blocks - 2}))
|
| 141 |
+
|
| 142 |
+
return featurizer
|
| 143 |
+
|
| 144 |
+
def _patch_layer_scales(self) -> None:
|
| 145 |
+
"""
|
| 146 |
+
Patch all LayerScale modules to be compatible with HF's parameter naming.
|
| 147 |
+
|
| 148 |
+
HF Transformers overwrites parameters with names containing 'gamma',
|
| 149 |
+
so we need to rename and modify the forward method.
|
| 150 |
+
"""
|
| 151 |
+
# Patch primary featurizer
|
| 152 |
+
for module in self.featurizer.modules():
|
| 153 |
+
if isinstance(module, LayerScale):
|
| 154 |
+
ls_apply_patch(module)
|
| 155 |
+
|
| 156 |
+
# Patch secondary featurizer if it exists
|
| 157 |
+
if self.use_fused_vision_backbone:
|
| 158 |
+
for module in self.fused_featurizer.modules():
|
| 159 |
+
if isinstance(module, LayerScale):
|
| 160 |
+
ls_apply_patch(module)
|
| 161 |
+
|
| 162 |
+
def get_num_patches(self) -> int:
|
| 163 |
+
"""
|
| 164 |
+
Returns the number of vision patches output by the vision backbone.
|
| 165 |
+
|
| 166 |
+
Returns:
|
| 167 |
+
Number of patches per image
|
| 168 |
+
"""
|
| 169 |
+
return self.featurizer.patch_embed.num_patches
|
| 170 |
+
|
| 171 |
+
def get_num_images_in_input(self) -> int:
|
| 172 |
+
"""
|
| 173 |
+
Returns the number of input images for the vision backbone.
|
| 174 |
+
|
| 175 |
+
Returns:
|
| 176 |
+
Number of images expected in the input
|
| 177 |
+
"""
|
| 178 |
+
return self.num_images_in_input
|
| 179 |
+
|
| 180 |
+
def set_num_images_in_input(self, num_images_in_input: int) -> None:
|
| 181 |
+
"""
|
| 182 |
+
Sets the number of input images for the vision backbone.
|
| 183 |
+
|
| 184 |
+
Args:
|
| 185 |
+
num_images_in_input: Number of images to expect in the input
|
| 186 |
+
"""
|
| 187 |
+
self.num_images_in_input = num_images_in_input
|
| 188 |
+
|
| 189 |
+
def forward(self, pixel_values: torch.Tensor) -> torch.Tensor:
|
| 190 |
+
"""
|
| 191 |
+
Implements the forward pass for the vision backbone.
|
| 192 |
+
|
| 193 |
+
If `self.use_fused_vision_backbone == True`, uses both SigLIP and DINOv2 transformers to extract visual features
|
| 194 |
+
(otherwise uses SigLIP only). Allows multi-image inputs (but only for fused vision backbone).
|
| 195 |
+
|
| 196 |
+
Args:
|
| 197 |
+
pixel_values (torch.Tensor): Pixels for input image(s), (B, C, H, W).
|
| 198 |
+
"""
|
| 199 |
+
if self.num_images_in_input == 1:
|
| 200 |
+
if not self.use_fused_vision_backbone:
|
| 201 |
+
return self.featurizer(pixel_values)
|
| 202 |
+
|
| 203 |
+
# Split `pixel_values :: [bsz, 2 * 3, resolution, resolution]` =>> featurize =>> channel stack
|
| 204 |
+
img, img_fused = torch.split(pixel_values, [3, 3], dim=1)
|
| 205 |
+
patches, patches_fused = self.featurizer(img), self.fused_featurizer(img_fused)
|
| 206 |
+
|
| 207 |
+
return torch.cat([patches, patches_fused], dim=2)
|
| 208 |
+
|
| 209 |
+
else:
|
| 210 |
+
assert self.use_fused_vision_backbone, "Multi-image inputs require using fused backbone!"
|
| 211 |
+
|
| 212 |
+
# Split `pixel_values` into individual images (each with 6 channels: 3 for SigLIP + 3 for DINOv2)
|
| 213 |
+
images = torch.split(pixel_values, [6] * self.num_images_in_input, dim=1)
|
| 214 |
+
|
| 215 |
+
# Process each image and collect patches
|
| 216 |
+
all_patches = []
|
| 217 |
+
for img in images:
|
| 218 |
+
# Split each image further into two stacks of channels (each with 3 channels)
|
| 219 |
+
img_regular, img_fused = torch.split(img, [3, 3], dim=1)
|
| 220 |
+
|
| 221 |
+
# Get patches from both SigLIP and DINOv2 vision transformers
|
| 222 |
+
patches = self.featurizer(img_regular)
|
| 223 |
+
patches_fused = self.fused_featurizer(img_fused)
|
| 224 |
+
|
| 225 |
+
# Concatenate SigLIP and DINOv2 patches along the hidden dimension
|
| 226 |
+
combined_patches = torch.cat([patches, patches_fused], dim=2)
|
| 227 |
+
all_patches.append(combined_patches)
|
| 228 |
+
|
| 229 |
+
# Concatenate all patches along the patch dimension
|
| 230 |
+
return torch.cat(all_patches, dim=1)
|
| 231 |
+
|
| 232 |
+
|
| 233 |
+
# === Prismatic Projector (nn.Module) Definitions ===
|
| 234 |
+
class PrismaticProjector(nn.Module):
|
| 235 |
+
def __init__(self, use_fused_vision_backbone: bool, vision_dim: int, llm_dim: int) -> None:
|
| 236 |
+
super().__init__()
|
| 237 |
+
self.use_fused_vision_backbone = use_fused_vision_backbone
|
| 238 |
+
self.vision_dim, self.llm_dim = vision_dim, llm_dim
|
| 239 |
+
|
| 240 |
+
# Switch on `use_fused_vision_backbone` =>> use slightly different MLPs and projection factors!
|
| 241 |
+
if not self.use_fused_vision_backbone:
|
| 242 |
+
self.fc1 = nn.Linear(self.vision_dim, self.llm_dim, bias=True)
|
| 243 |
+
self.fc2 = nn.Linear(self.llm_dim, self.llm_dim, bias=True)
|
| 244 |
+
self.act_fn1 = nn.GELU()
|
| 245 |
+
else:
|
| 246 |
+
initial_projection_dim = 4 * vision_dim
|
| 247 |
+
self.fc1 = nn.Linear(self.vision_dim, initial_projection_dim, bias=True)
|
| 248 |
+
self.fc2 = nn.Linear(initial_projection_dim, self.llm_dim, bias=True)
|
| 249 |
+
self.fc3 = nn.Linear(self.llm_dim, self.llm_dim, bias=True)
|
| 250 |
+
self.act_fn1 = nn.GELU()
|
| 251 |
+
self.act_fn2 = nn.GELU()
|
| 252 |
+
|
| 253 |
+
def forward(self, img_patches: torch.Tensor) -> torch.Tensor:
|
| 254 |
+
if not self.use_fused_vision_backbone:
|
| 255 |
+
projected_features = self.fc1(img_patches)
|
| 256 |
+
projected_features = self.act_fn1(projected_features)
|
| 257 |
+
projected_features = self.fc2(projected_features)
|
| 258 |
+
else:
|
| 259 |
+
projected_features = self.fc1(img_patches)
|
| 260 |
+
projected_features = self.act_fn1(projected_features)
|
| 261 |
+
projected_features = self.fc2(projected_features)
|
| 262 |
+
projected_features = self.act_fn2(projected_features)
|
| 263 |
+
projected_features = self.fc3(projected_features)
|
| 264 |
+
|
| 265 |
+
return projected_features
|
| 266 |
+
|
| 267 |
+
|
| 268 |
+
# === Main HF Class Definitions ===
|
| 269 |
+
@dataclass
|
| 270 |
+
class PrismaticCausalLMOutputWithPast(ModelOutput):
|
| 271 |
+
"""Base class for Prismatic casual (visually-conditioned) language model outputs; also exposes visual features."""
|
| 272 |
+
|
| 273 |
+
loss: Optional[torch.FloatTensor] = None
|
| 274 |
+
logits: torch.FloatTensor = None
|
| 275 |
+
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
|
| 276 |
+
hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
|
| 277 |
+
attentions: Optional[Tuple[torch.FloatTensor]] = None
|
| 278 |
+
|
| 279 |
+
# Additions for VLMs
|
| 280 |
+
projector_features: Optional[torch.FloatTensor] = None
|
| 281 |
+
|
| 282 |
+
|
| 283 |
+
class PrismaticPreTrainedModel(PreTrainedModel):
|
| 284 |
+
config_class: PretrainedConfig = PrismaticConfig
|
| 285 |
+
base_model_prefix: str = "model"
|
| 286 |
+
supports_gradient_checkpointing: bool = True
|
| 287 |
+
|
| 288 |
+
_no_split_modules: ClassVar[List[str]] = ["PrismaticProjector"]
|
| 289 |
+
_skip_keys_device_placement: str = "past_key_values"
|
| 290 |
+
_supports_flash_attn_2: bool = True
|
| 291 |
+
|
| 292 |
+
def _init_weights(self, module: nn.Module) -> None:
|
| 293 |
+
# Important :: this HF ported version is *not* meant for training from scratch; only inference and fine-tuning!
|
| 294 |
+
# => As such, this init_weights code is not correct; if training VLMs from scratch, use the main codebase at
|
| 295 |
+
# https://github.com/TRI-ML/prismatic-vlms
|
| 296 |
+
std = (
|
| 297 |
+
self.config.initializer_range
|
| 298 |
+
if hasattr(self.config, "initializer_range")
|
| 299 |
+
else self.config.text_config.initializer_range
|
| 300 |
+
)
|
| 301 |
+
|
| 302 |
+
if hasattr(module, "class_embedding"):
|
| 303 |
+
module.class_embedding.data.normal_(mean=0.0, std=std)
|
| 304 |
+
|
| 305 |
+
if isinstance(module, (nn.Linear, nn.Conv2d)):
|
| 306 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
| 307 |
+
if module.bias is not None:
|
| 308 |
+
module.bias.data.zero_()
|
| 309 |
+
elif isinstance(module, nn.Embedding):
|
| 310 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
| 311 |
+
if module.padding_idx is not None:
|
| 312 |
+
module.weight.data[module.padding_idx].zero_()
|
| 313 |
+
|
| 314 |
+
@property
|
| 315 |
+
def _supports_sdpa(self) -> bool:
|
| 316 |
+
"""Check LLM supports SDPA Attention"""
|
| 317 |
+
return self.language_model._supports_sdpa
|
| 318 |
+
|
| 319 |
+
|
| 320 |
+
class PrismaticForConditionalGeneration(PrismaticPreTrainedModel):
|
| 321 |
+
def __init__(self, config: PrismaticConfig) -> None:
|
| 322 |
+
super().__init__(config)
|
| 323 |
+
|
| 324 |
+
# [Validation] Lightweight Validate on `config` Fields + Dependency Versions
|
| 325 |
+
if config.use_fused_vision_backbone is None:
|
| 326 |
+
raise ValueError("Missing config field `use_fused_vision_backbone`")
|
| 327 |
+
|
| 328 |
+
if timm.__version__ not in {"0.9.10", "0.9.11", "0.9.12", "0.9.16"}:
|
| 329 |
+
raise NotImplementedError(
|
| 330 |
+
"TIMM Version must be >= 0.9.10 and < 1.0.0 (breaking); please raise a GitHub Issue "
|
| 331 |
+
"if you urgently need support for latest TIMM versions."
|
| 332 |
+
)
|
| 333 |
+
|
| 334 |
+
if (transformers.__version__ != "4.40.1") or (tokenizers.__version__ != "0.19.1"):
|
| 335 |
+
logger.warning(
|
| 336 |
+
f"Expected `transformers==4.40.1` and `tokenizers==0.19.1` but got "
|
| 337 |
+
f"`transformers=={transformers.__version__}` and `tokenizers=={tokenizers.__version__}`; "
|
| 338 |
+
f"there might be inference-time regressions due to dependency changes. If in doubt, please"
|
| 339 |
+
f"use the above versions."
|
| 340 |
+
)
|
| 341 |
+
# import pdb; pdb.set_trace()
|
| 342 |
+
# Instantiate PrismaticVisionBackbone (w/ Potential Fused Backbone)
|
| 343 |
+
self.vision_backbone = PrismaticVisionBackbone(
|
| 344 |
+
config.use_fused_vision_backbone, config.image_sizes, config.timm_model_ids, config.timm_override_act_layers
|
| 345 |
+
)
|
| 346 |
+
|
| 347 |
+
# Create Multimodal Projector
|
| 348 |
+
self.projector = PrismaticProjector(
|
| 349 |
+
config.use_fused_vision_backbone,
|
| 350 |
+
vision_dim=self.vision_backbone.embed_dim,
|
| 351 |
+
llm_dim=config.text_config.hidden_size,
|
| 352 |
+
)
|
| 353 |
+
|
| 354 |
+
# Instantiate LLM Backbone
|
| 355 |
+
self.language_model = AutoModelForCausalLM.from_config(
|
| 356 |
+
config.text_config, attn_implementation=config._attn_implementation
|
| 357 |
+
)
|
| 358 |
+
|
| 359 |
+
self.vocab_size = config.text_config.vocab_size
|
| 360 |
+
self.pad_token_id = config.pad_token_id
|
| 361 |
+
self.llm_dim = config.text_config.hidden_size
|
| 362 |
+
|
| 363 |
+
#Action query token
|
| 364 |
+
self.action_queries = nn.Embedding(NUM_TOKENS, self.llm_dim)
|
| 365 |
+
self.action_queries.weight.data.zero_()
|
| 366 |
+
|
| 367 |
+
# HF Boilerplate =>> initializes weights via `_init_weights()` and sets gradient checkpointing
|
| 368 |
+
self.post_init()
|
| 369 |
+
|
| 370 |
+
# === `PreTrainedModel` Boilerplate ===
|
| 371 |
+
def get_input_embeddings(self) -> nn.Module:
|
| 372 |
+
return self.language_model.get_input_embeddings()
|
| 373 |
+
def set_version(self, version: str):
|
| 374 |
+
self.version = version
|
| 375 |
+
return self.version
|
| 376 |
+
|
| 377 |
+
|
| 378 |
+
def set_input_embeddings(self, value: nn.Module) -> None:
|
| 379 |
+
self.language_model.set_input_embeddings(value)
|
| 380 |
+
|
| 381 |
+
def get_output_embeddings(self) -> nn.Module:
|
| 382 |
+
return self.language_model.get_output_embeddings()
|
| 383 |
+
|
| 384 |
+
def set_output_embeddings(self, new_embeddings: nn.Module) -> None:
|
| 385 |
+
self.language_model.set_output_embeddings(new_embeddings)
|
| 386 |
+
|
| 387 |
+
def get_decoder(self) -> nn.Module:
|
| 388 |
+
return self.language_model.get_decoder()
|
| 389 |
+
|
| 390 |
+
def set_decoder(self, decoder: nn.Module) -> None:
|
| 391 |
+
self.language_model.set_decoder(decoder)
|
| 392 |
+
|
| 393 |
+
def tie_weights(self) -> None:
|
| 394 |
+
self.language_model.tie_weights() # Note: `Llama-2` and `Mistral` don't tie weights (no-op)
|
| 395 |
+
|
| 396 |
+
def resize_token_embeddings(
|
| 397 |
+
self, new_num_tokens: Optional[int] = None, pad_to_multiple_of: Optional[int] = None
|
| 398 |
+
) -> nn.Embedding:
|
| 399 |
+
updated_embeddings = self.language_model.resize_token_embeddings(new_num_tokens, pad_to_multiple_of)
|
| 400 |
+
|
| 401 |
+
# Update config/instance variables
|
| 402 |
+
self.config.text_config.vocab_size = updated_embeddings.num_embeddings
|
| 403 |
+
self.vocab_size = updated_embeddings.num_embeddings
|
| 404 |
+
|
| 405 |
+
return updated_embeddings
|
| 406 |
+
|
| 407 |
+
def _replace_input_embeddings(self, input_embeddings, all_actions_mask, noisy_action_features):
|
| 408 |
+
"""
|
| 409 |
+
Replace embeddings in input_embeddings at positions where all_actions_mask is True
|
| 410 |
+
with embeddings from noisy_action_features, using vectorized operations.
|
| 411 |
+
|
| 412 |
+
Args:
|
| 413 |
+
input_embeddings: Tensor of shape (B, S, D)
|
| 414 |
+
all_actions_mask: Boolean tensor of shape (B, S)
|
| 415 |
+
noisy_action_features: Tensor of shape (B, K, D) where K is the number of True values in mask per sample
|
| 416 |
+
|
| 417 |
+
Returns:
|
| 418 |
+
Modified input_embeddings tensor
|
| 419 |
+
"""
|
| 420 |
+
# Clone input to avoid modifying the original tensor
|
| 421 |
+
new_input_embeddings = input_embeddings.clone()
|
| 422 |
+
|
| 423 |
+
# Create a tensor with the same shape of input_embeddings to hold the noisy action features
|
| 424 |
+
repositioned_noisy_action_features = torch.zeros_like(input_embeddings)
|
| 425 |
+
|
| 426 |
+
# Create batch indices for splicing
|
| 427 |
+
batch_indices = torch.arange(input_embeddings.shape[0], device=input_embeddings.device)
|
| 428 |
+
batch_indices = batch_indices.unsqueeze(1).expand(-1, noisy_action_features.shape[1])
|
| 429 |
+
|
| 430 |
+
# Get indices where mask is True for each sample
|
| 431 |
+
masked_indices = torch.stack([torch.where(mask)[0] for mask in all_actions_mask])
|
| 432 |
+
|
| 433 |
+
# Move the noisy action features into their correct positions
|
| 434 |
+
# print(noisy_action_features.size())
|
| 435 |
+
# import pdb; pdb.set_trace()
|
| 436 |
+
repositioned_noisy_action_features[batch_indices, masked_indices] = noisy_action_features
|
| 437 |
+
|
| 438 |
+
# Combine original input embeddings and noisy action embeddings using the mask
|
| 439 |
+
new_input_embeddings = torch.where(
|
| 440 |
+
all_actions_mask.unsqueeze(-1), repositioned_noisy_action_features, new_input_embeddings
|
| 441 |
+
)
|
| 442 |
+
|
| 443 |
+
return new_input_embeddings
|
| 444 |
+
|
| 445 |
+
def _process_action_masks(self, labels):
|
| 446 |
+
"""Helper to get action masks from labels"""
|
| 447 |
+
current_action_mask = get_current_action_mask(labels)
|
| 448 |
+
next_actions_mask = get_next_actions_mask(labels)
|
| 449 |
+
all_actions_mask = current_action_mask | next_actions_mask # (B, seq_len)
|
| 450 |
+
return all_actions_mask
|
| 451 |
+
|
| 452 |
+
def _process_vision_features(self, pixel_values, language_embeddings=None, use_film=False):
|
| 453 |
+
"""Process vision features with optional FiLM conditioning"""
|
| 454 |
+
if use_film:
|
| 455 |
+
# FiLM: Infuse language inputs into visual features
|
| 456 |
+
patch_features = self.vision_backbone(pixel_values, language_embeddings) # (bsz, 256 * num_images, D)
|
| 457 |
+
else:
|
| 458 |
+
patch_features = self.vision_backbone(pixel_values) # (bsz, 256 * num_images, D)
|
| 459 |
+
|
| 460 |
+
# Project patch embeddings into language embedding space
|
| 461 |
+
return self.projector(patch_features)
|
| 462 |
+
|
| 463 |
+
def _process_proprio_features(self, projected_patch_embeddings, proprio, proprio_projector):
|
| 464 |
+
"""Process proprioceptive features and append to vision features"""
|
| 465 |
+
if proprio_projector is not None and proprio is not None:
|
| 466 |
+
# projected_patch_embeddings: (bsz, num_patches * num_images, llm_dim)
|
| 467 |
+
# proprio: (bsz, proprio_dim) or (propro_dim,)
|
| 468 |
+
proprio = proprio.reshape(projected_patch_embeddings.shape[0], -1) # (bsz, proprio_dim)
|
| 469 |
+
proprio_features = proprio_projector(proprio) # (bsz, llm_dim)
|
| 470 |
+
proprio_features = proprio_features.unsqueeze(dim=1) # (bsz, 1, llm_dim)
|
| 471 |
+
# For simplicity, just append proprio token to the end of projected vision patch tokens
|
| 472 |
+
return torch.cat((projected_patch_embeddings, proprio_features), dim=1)
|
| 473 |
+
return projected_patch_embeddings
|
| 474 |
+
|
| 475 |
+
def _build_multimodal_attention(self, input_embeddings, projected_patch_embeddings, attention_mask):
|
| 476 |
+
"""Build multimodal embeddings and attention mask"""
|
| 477 |
+
# Update attention mask
|
| 478 |
+
# import pdb; pdb.set_trace()
|
| 479 |
+
projected_patch_attention_mask = None
|
| 480 |
+
if attention_mask is not None:
|
| 481 |
+
projected_patch_attention_mask = torch.full(
|
| 482 |
+
(projected_patch_embeddings.shape[0], projected_patch_embeddings.shape[1]),
|
| 483 |
+
fill_value=True,
|
| 484 |
+
dtype=attention_mask.dtype,
|
| 485 |
+
device=attention_mask.device,
|
| 486 |
+
)
|
| 487 |
+
|
| 488 |
+
# Build multimodal embeddings & attention mask; insert embeddings after <BOS> token (1:)
|
| 489 |
+
multimodal_embeddings = torch.cat(
|
| 490 |
+
[input_embeddings[:, :1, :], projected_patch_embeddings, input_embeddings[:, 1:, :]], dim=1
|
| 491 |
+
)
|
| 492 |
+
|
| 493 |
+
multimodal_attention_mask = None
|
| 494 |
+
if attention_mask is not None:
|
| 495 |
+
multimodal_attention_mask = torch.cat(
|
| 496 |
+
[attention_mask[:, :1], projected_patch_attention_mask, attention_mask[:, 1:]], dim=1
|
| 497 |
+
)
|
| 498 |
+
|
| 499 |
+
return multimodal_embeddings, multimodal_attention_mask
|
| 500 |
+
|
| 501 |
+
def _build_multimodal_labels(self, labels, projected_patch_embeddings):
|
| 502 |
+
"""Build multimodal labels with IGNORE_INDEX for patch embeddings"""
|
| 503 |
+
if labels is not None:
|
| 504 |
+
projected_patch_labels = torch.full(
|
| 505 |
+
(projected_patch_embeddings.shape[0], projected_patch_embeddings.shape[1]),
|
| 506 |
+
fill_value=IGNORE_INDEX,
|
| 507 |
+
dtype=labels.dtype,
|
| 508 |
+
device=labels.device,
|
| 509 |
+
)
|
| 510 |
+
return torch.cat([labels[:, :1], projected_patch_labels, labels[:, 1:]], dim=1)
|
| 511 |
+
return None
|
| 512 |
+
|
| 513 |
+
# === Core Prismatic VLM `forward()` Logic ===
|
| 514 |
+
def forward(
|
| 515 |
+
self,
|
| 516 |
+
input_ids: Optional[torch.LongTensor] = None,
|
| 517 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 518 |
+
pixel_values: Optional[torch.FloatTensor] = None,
|
| 519 |
+
labels: Optional[torch.LongTensor] = None,
|
| 520 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
| 521 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
| 522 |
+
use_cache: Optional[bool] = None,
|
| 523 |
+
output_attentions: Optional[bool] = None,
|
| 524 |
+
output_hidden_states: Optional[bool] = None,
|
| 525 |
+
output_projector_features: Optional[bool] = None,
|
| 526 |
+
return_dict: Optional[bool] = None,
|
| 527 |
+
proprio=None,
|
| 528 |
+
proprio_projector=None,
|
| 529 |
+
noisy_actions=None,
|
| 530 |
+
noisy_action_projector=None,
|
| 531 |
+
diffusion_timestep_embeddings=None,
|
| 532 |
+
use_film: bool = False,
|
| 533 |
+
) -> Union[Tuple, PrismaticCausalLMOutputWithPast]:
|
| 534 |
+
"""Run a forward pass through the VLM, returning a PrismaticCausalLMOutputWithPast instance."""
|
| 535 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
| 536 |
+
output_hidden_states = (
|
| 537 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
| 538 |
+
)
|
| 539 |
+
output_projector_features = output_projector_features if output_projector_features is not None else False
|
| 540 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 541 |
+
|
| 542 |
+
# Respect `use_cache` only if not training (even if `gradient_checkpointing` is off)
|
| 543 |
+
use_cache = use_cache and not self.training
|
| 544 |
+
|
| 545 |
+
# Instantiate Placeholder for Projector Features
|
| 546 |
+
projected_patch_embeddings = None
|
| 547 |
+
|
| 548 |
+
# === Handle Generation with Cache (`input_ids.shape[1] == 1`) =>> requires `past_keys_values` ===
|
| 549 |
+
if input_ids.shape[1] == 1:
|
| 550 |
+
assert input_ids.shape[0] == 1, "Generation is only currently supported for batch size of 1!"
|
| 551 |
+
assert past_key_values is not None, "You must provide `past_key_values` during cached generation!"
|
| 552 |
+
assert labels is None, "Unexpected key `labels` provided during cached generation!"
|
| 553 |
+
|
| 554 |
+
language_model_output = self.language_model(
|
| 555 |
+
input_ids=input_ids,
|
| 556 |
+
attention_mask=None,
|
| 557 |
+
position_ids=None,
|
| 558 |
+
past_key_values=past_key_values,
|
| 559 |
+
inputs_embeds=None,
|
| 560 |
+
labels=None,
|
| 561 |
+
use_cache=use_cache,
|
| 562 |
+
output_attentions=output_attentions,
|
| 563 |
+
output_hidden_states=output_hidden_states,
|
| 564 |
+
return_dict=return_dict,
|
| 565 |
+
)
|
| 566 |
+
|
| 567 |
+
# === Handle Unimodal Forward ===
|
| 568 |
+
elif pixel_values is None:
|
| 569 |
+
assert (input_ids is not None) and (inputs_embeds is None), "Missing `input_ids` in language-only forward!"
|
| 570 |
+
assert past_key_values is None, "Unexpected key `past_key_values` provided during language-only forward!"
|
| 571 |
+
|
| 572 |
+
language_model_output = self.language_model(
|
| 573 |
+
input_ids=input_ids,
|
| 574 |
+
attention_mask=attention_mask,
|
| 575 |
+
position_ids=None,
|
| 576 |
+
past_key_values=None,
|
| 577 |
+
inputs_embeds=None,
|
| 578 |
+
labels=labels,
|
| 579 |
+
use_cache=use_cache,
|
| 580 |
+
output_attentions=output_attentions,
|
| 581 |
+
output_hidden_states=output_hidden_states,
|
| 582 |
+
return_dict=return_dict,
|
| 583 |
+
)
|
| 584 |
+
|
| 585 |
+
# === Handle Multimodal Forward ===
|
| 586 |
+
elif (input_ids.shape[0] == pixel_values.shape[0]) or (inputs_embeds.shape[0] == pixel_values.shape[0]):
|
| 587 |
+
assert past_key_values is None, "Unexpected key `past_key_values` provided during multimodal forward!"
|
| 588 |
+
|
| 589 |
+
# Get input embeddings (from language model embeddings)
|
| 590 |
+
input_embeddings = self.get_input_embeddings()(input_ids) # (B, seq_len, D)
|
| 591 |
+
|
| 592 |
+
# import pdb; pdb.set_trace()
|
| 593 |
+
# Extract action masks
|
| 594 |
+
all_actions_mask = self._process_action_masks(labels)
|
| 595 |
+
|
| 596 |
+
# Extract the language portion of the input embeddings (i.e. remove the action tokens portion)
|
| 597 |
+
# import pdb; pdb.set_trace()
|
| 598 |
+
# print(input_embeddings[~all_actions_mask].size())
|
| 599 |
+
language_embeddings = input_embeddings[~all_actions_mask].reshape(
|
| 600 |
+
input_embeddings.shape[0], -1, input_embeddings.shape[2]
|
| 601 |
+
) # (B, lang_seq_len, llm_dim)
|
| 602 |
+
|
| 603 |
+
# Get visual features
|
| 604 |
+
projected_patch_embeddings = self._process_vision_features(pixel_values, language_embeddings, use_film)
|
| 605 |
+
|
| 606 |
+
# Add proprioceptive state if provided
|
| 607 |
+
if self.version == 'v1':
|
| 608 |
+
pass
|
| 609 |
+
else:
|
| 610 |
+
projected_patch_embeddings = self._process_proprio_features(
|
| 611 |
+
projected_patch_embeddings, proprio, proprio_projector
|
| 612 |
+
)
|
| 613 |
+
|
| 614 |
+
# [Diffusion] Add diffusion timestep embedding if provided
|
| 615 |
+
if diffusion_timestep_embeddings is not None:
|
| 616 |
+
if self.version == 'v1':
|
| 617 |
+
pass
|
| 618 |
+
else:
|
| 619 |
+
# For simplicity, just append diffusion timestep embedding to the end of projected vision patch tokens
|
| 620 |
+
projected_patch_embeddings = torch.cat(
|
| 621 |
+
(projected_patch_embeddings, diffusion_timestep_embeddings), dim=1
|
| 622 |
+
)
|
| 623 |
+
|
| 624 |
+
|
| 625 |
+
# Process action embeddings
|
| 626 |
+
if noisy_actions is not None:
|
| 627 |
+
# import pdb; pdb.set_trace()
|
| 628 |
+
if self.version == 'v1':
|
| 629 |
+
# action_queries = self.action_queries.weight # (1, h)
|
| 630 |
+
# action_queries = action_queries.view(1, 1, action_queries.shape[1]).repeat(input_embeddings.shape[0], 1, 1) # (b, chunk_size, h)
|
| 631 |
+
# input_embeddings = torch.cat((input_embeddings, action_queries), dim=1) # (b, n_tokens+chunk_size, h)
|
| 632 |
+
# action_attention_mask = None
|
| 633 |
+
# action_attention_mask = torch.full(
|
| 634 |
+
# (action_queries.shape[0], action_queries.shape[1]),
|
| 635 |
+
# fill_value=True,
|
| 636 |
+
# dtype=attention_mask.dtype,
|
| 637 |
+
# device=attention_mask.device,)
|
| 638 |
+
# attention_mask = torch.cat([attention_mask, action_attention_mask], dim=1)
|
| 639 |
+
|
| 640 |
+
action_queries = self.action_queries.weight # (1, h)
|
| 641 |
+
action_queries = action_queries.view(1, action_queries.shape[0], action_queries.shape[1]).repeat(input_embeddings.shape[0], 1, 1) # (b, chunk_size, h)
|
| 642 |
+
all_actions_mask = self._process_action_masks(labels)
|
| 643 |
+
input_embeddings = self._replace_input_embeddings(
|
| 644 |
+
input_embeddings, all_actions_mask, action_queries)
|
| 645 |
+
# import pdb; pdb.set_trace()
|
| 646 |
+
|
| 647 |
+
else:
|
| 648 |
+
# Get mask corresponding to all action tokens
|
| 649 |
+
all_actions_mask = self._process_action_masks(labels)
|
| 650 |
+
|
| 651 |
+
# Reshape noisy actions into individual action tokens
|
| 652 |
+
# noisy_actions: (B, chunk_len, action_dim) -> (B, chunk_len * action_dim, 1)
|
| 653 |
+
B = noisy_actions.shape[0]
|
| 654 |
+
noisy_actions = noisy_actions.reshape(B, -1).unsqueeze(-1)
|
| 655 |
+
# Project noisy action tokens into language model embedding space
|
| 656 |
+
noisy_action_features = noisy_action_projector(noisy_actions) # (B, chunk_len * action_dim, llm_dim)
|
| 657 |
+
# Replace embeddings of the action tokens with noisy action embeddings
|
| 658 |
+
input_embeddings = self._replace_input_embeddings(
|
| 659 |
+
input_embeddings, all_actions_mask, noisy_action_features)
|
| 660 |
+
|
| 661 |
+
else:
|
| 662 |
+
if self.version == 'v1':
|
| 663 |
+
action_queries = self.action_queries.weight # (1, h)
|
| 664 |
+
action_queries = action_queries.view(1, action_queries.shape[0], action_queries.shape[1]).repeat(input_embeddings.shape[0], 1, 1) # (b, chunk_size, h)
|
| 665 |
+
all_actions_mask = self._process_action_masks(labels)
|
| 666 |
+
input_embeddings = self._replace_input_embeddings(
|
| 667 |
+
input_embeddings, all_actions_mask, action_queries)
|
| 668 |
+
# import pdb; pdb.set_trace()
|
| 669 |
+
else:
|
| 670 |
+
# Replace the embeddings of the action tokens with zeros
|
| 671 |
+
# (Later on, the positional embeddings will be added to them)
|
| 672 |
+
all_actions_mask = all_actions_mask.unsqueeze(-1) # (B, seq_len, 1)
|
| 673 |
+
input_embeddings = input_embeddings * ~all_actions_mask
|
| 674 |
+
|
| 675 |
+
|
| 676 |
+
# Build multimodal embeddings & attention mask
|
| 677 |
+
multimodal_embeddings, multimodal_attention_mask = self._build_multimodal_attention(
|
| 678 |
+
input_embeddings, projected_patch_embeddings, attention_mask
|
| 679 |
+
)
|
| 680 |
+
# import pdb; pdb.set_trace()
|
| 681 |
+
# Build labels for multimodal sequence if needed
|
| 682 |
+
multimodal_labels = self._build_multimodal_labels(labels, projected_patch_embeddings)
|
| 683 |
+
|
| 684 |
+
# import pdb; pdb.set_trace()
|
| 685 |
+
# Dispatch to language model
|
| 686 |
+
if self.version == 'v1':
|
| 687 |
+
# import pdb; pdb.set_trace()
|
| 688 |
+
language_model_output = self.language_model(
|
| 689 |
+
input_ids=None,
|
| 690 |
+
attention_mask=multimodal_attention_mask,
|
| 691 |
+
position_ids=None,
|
| 692 |
+
past_key_values=None,
|
| 693 |
+
inputs_embeds=multimodal_embeddings,
|
| 694 |
+
labels=None,
|
| 695 |
+
use_cache=use_cache,
|
| 696 |
+
output_attentions=output_attentions,
|
| 697 |
+
output_hidden_states=output_hidden_states,
|
| 698 |
+
return_dict=return_dict,
|
| 699 |
+
)
|
| 700 |
+
# import pdb; pdb.set_trace()
|
| 701 |
+
else:
|
| 702 |
+
language_model_output = self.language_model(
|
| 703 |
+
input_ids=None,
|
| 704 |
+
attention_mask=multimodal_attention_mask,
|
| 705 |
+
position_ids=None,
|
| 706 |
+
past_key_values=None,
|
| 707 |
+
inputs_embeds=multimodal_embeddings,
|
| 708 |
+
labels=multimodal_labels,
|
| 709 |
+
use_cache=use_cache,
|
| 710 |
+
output_attentions=output_attentions,
|
| 711 |
+
output_hidden_states=output_hidden_states,
|
| 712 |
+
return_dict=return_dict,
|
| 713 |
+
)
|
| 714 |
+
|
| 715 |
+
# === Otherwise =>> Assume Invalid! ===
|
| 716 |
+
elif (input_ids.shape[0] != pixel_values.shape[0]) or (inputs_embeds.shape[0] != pixel_values.shape[0]):
|
| 717 |
+
raise ValueError("Non-homogenous batch of (text, image) input -- forward() does not support mixed batches!")
|
| 718 |
+
|
| 719 |
+
else:
|
| 720 |
+
raise ValueError(
|
| 721 |
+
"Invalid PrismaticForConditionalGeneration `forward()` call with provided arguments:\n"
|
| 722 |
+
f"=> `input_ids` = {input_ids is not None}\n"
|
| 723 |
+
f"=> `attention_mask` = {attention_mask is not None}\n"
|
| 724 |
+
f"=> `pixel_values` = {pixel_values is not None}\n"
|
| 725 |
+
f"=> `labels` = {labels is not None}\n"
|
| 726 |
+
f"=> `input_embeds` = {inputs_embeds is not None}\n"
|
| 727 |
+
f"=> `past_key_values` = {past_key_values is not None}\n"
|
| 728 |
+
f"=> `use_cache` = {use_cache}"
|
| 729 |
+
)
|
| 730 |
+
|
| 731 |
+
# Unpack `language_model_output` and return PrismaticCausalLMOutputWithPast (or tuple if not `return_dict`)
|
| 732 |
+
if not return_dict:
|
| 733 |
+
if output_projector_features and (projected_patch_embeddings is not None):
|
| 734 |
+
return *language_model_output, projected_patch_embeddings
|
| 735 |
+
|
| 736 |
+
return language_model_output
|
| 737 |
+
|
| 738 |
+
if self.version == 'v1':
|
| 739 |
+
return PrismaticCausalLMOutputWithPast(
|
| 740 |
+
loss=language_model_output.loss,
|
| 741 |
+
past_key_values=language_model_output.past_key_values,
|
| 742 |
+
hidden_states=language_model_output.hidden_states,
|
| 743 |
+
attentions=language_model_output.attentions,
|
| 744 |
+
projector_features=projected_patch_embeddings,
|
| 745 |
+
)
|
| 746 |
+
else:
|
| 747 |
+
return PrismaticCausalLMOutputWithPast(
|
| 748 |
+
loss=language_model_output.loss,
|
| 749 |
+
logits=language_model_output.logits,
|
| 750 |
+
past_key_values=language_model_output.past_key_values,
|
| 751 |
+
hidden_states=language_model_output.hidden_states,
|
| 752 |
+
attentions=language_model_output.attentions,
|
| 753 |
+
projector_features=projected_patch_embeddings,
|
| 754 |
+
)
|
| 755 |
+
|
| 756 |
+
# === GenerationMixin Methods ===
|
| 757 |
+
def prepare_inputs_for_generation(
|
| 758 |
+
self,
|
| 759 |
+
input_ids: Optional[torch.Tensor] = None,
|
| 760 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
| 761 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
| 762 |
+
pixel_values: Optional[torch.FloatTensor] = None,
|
| 763 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 764 |
+
**kwargs: str,
|
| 765 |
+
) -> Dict[str, torch.Tensor]:
|
| 766 |
+
"""Borrowed from `LlamaForCausalLM` and simplified for batch size = 1; mirrors original PrismaticVLM logic."""
|
| 767 |
+
if ((input_ids is not None) and (input_ids.shape[0] > 1)) or (
|
| 768 |
+
(inputs_embeds is not None) and (inputs_embeds.shape[0] > 1)
|
| 769 |
+
):
|
| 770 |
+
raise ValueError("Generation with batch size > 1 is not currently supported!")
|
| 771 |
+
|
| 772 |
+
# Handle `past_key_values` (cache) =>> assume `input_ids` just has unprocessed tokens
|
| 773 |
+
if past_key_values is not None:
|
| 774 |
+
input_ids = input_ids[:, -1:]
|
| 775 |
+
|
| 776 |
+
# If `input_embeds` are passed, we only want to use them in the 1st generation step
|
| 777 |
+
if inputs_embeds is not None and past_key_values is None:
|
| 778 |
+
model_inputs = {"input_embeds": inputs_embeds}
|
| 779 |
+
else:
|
| 780 |
+
model_inputs = {"input_ids": input_ids}
|
| 781 |
+
|
| 782 |
+
# Make sure `pixel_values` are preserved in `model_inputs`
|
| 783 |
+
model_inputs.update(
|
| 784 |
+
{
|
| 785 |
+
"attention_mask": attention_mask,
|
| 786 |
+
"pixel_values": pixel_values,
|
| 787 |
+
"past_key_values": past_key_values,
|
| 788 |
+
"use_cache": kwargs.get("use_cache"),
|
| 789 |
+
}
|
| 790 |
+
)
|
| 791 |
+
|
| 792 |
+
return model_inputs
|
| 793 |
+
|
| 794 |
+
# Defer to Language Model (all handle this differently, with different return types)
|
| 795 |
+
def _reorder_cache(self, *args, **kwargs) -> Any:
|
| 796 |
+
return self.language_model._reorder_cache(*args, **kwargs)
|
| 797 |
+
|
| 798 |
+
|
| 799 |
+
class OpenVLAForActionPrediction(PrismaticForConditionalGeneration):
|
| 800 |
+
config_class: PretrainedConfig = OpenVLAConfig
|
| 801 |
+
|
| 802 |
+
def __init__(self, config: OpenVLAConfig) -> None:
|
| 803 |
+
super().__init__(config)
|
| 804 |
+
self.norm_stats = config.norm_stats
|
| 805 |
+
# import pdb; pdb.set_trace()
|
| 806 |
+
|
| 807 |
+
# Compute action bins
|
| 808 |
+
self.bins = np.linspace(-1, 1, config.n_action_bins)
|
| 809 |
+
self.bin_centers = (self.bins[:-1] + self.bins[1:]) / 2.0
|
| 810 |
+
|
| 811 |
+
# Compute vocab size for de-tokenization -- revert added "multiple of"
|
| 812 |
+
self.vocab_size = self.config.text_config.vocab_size - self.config.pad_to_multiple_of
|
| 813 |
+
|
| 814 |
+
def _prepare_input_for_action_prediction(self, input_ids, attention_mask):
|
| 815 |
+
"""Prepares input for action prediction by adding necessary tokens"""
|
| 816 |
+
# Add (ACTION_DIM * NUM_ACTIONS_CHUNK) placeholder tokens to input_ids to simulate action tokens
|
| 817 |
+
placeholder_action_token_ids = (
|
| 818 |
+
torch.ones((input_ids.shape[0], NUM_TOKENS)).to(input_ids.device).to(input_ids.dtype)
|
| 819 |
+
)
|
| 820 |
+
input_ids = torch.cat([input_ids, placeholder_action_token_ids], dim=-1)
|
| 821 |
+
|
| 822 |
+
# Add stop token to sequence (needed in non-causal bi-directional self-attention, as it appears at train time)
|
| 823 |
+
stop_token_id = torch.ones((input_ids.shape[0], 1)).to(input_ids.device).to(input_ids.dtype) * STOP_INDEX
|
| 824 |
+
input_ids = torch.cat([input_ids, stop_token_id], dim=-1)
|
| 825 |
+
|
| 826 |
+
# Extend the attention mask to fit the new shape of input
|
| 827 |
+
# Note: Only batch size == 1 supported right now
|
| 828 |
+
mask_extension = (
|
| 829 |
+
torch.ones((attention_mask.shape[0], input_ids.shape[-1] - attention_mask.shape[-1]))
|
| 830 |
+
.to(attention_mask.device)
|
| 831 |
+
.to(attention_mask.dtype)
|
| 832 |
+
)
|
| 833 |
+
attention_mask = torch.cat([attention_mask, mask_extension], dim=-1)
|
| 834 |
+
|
| 835 |
+
return input_ids, attention_mask
|
| 836 |
+
|
| 837 |
+
def _prepare_labels_for_action_prediction(self, labels, input_ids):
|
| 838 |
+
"""Creates labels tensor for action prediction if not provided"""
|
| 839 |
+
# Extend labels tensor with fake action labels
|
| 840 |
+
ARBITRARY_ACTION_TOKEN_IDX = ACTION_TOKEN_BEGIN_IDX + 1
|
| 841 |
+
labels_extension = (
|
| 842 |
+
torch.ones((labels.shape[0], input_ids.shape[-1] - labels.shape[-1])).to(labels.device).to(labels.dtype)
|
| 843 |
+
* ARBITRARY_ACTION_TOKEN_IDX
|
| 844 |
+
)
|
| 845 |
+
labels = torch.cat([labels, labels_extension], dim=-1)
|
| 846 |
+
|
| 847 |
+
# Replace last label token with stop token
|
| 848 |
+
labels[:, -1] = STOP_INDEX
|
| 849 |
+
|
| 850 |
+
return labels
|
| 851 |
+
|
| 852 |
+
def _unnormalize_actions(self, normalized_actions, unnorm_key=None):
|
| 853 |
+
"""Unnormalize actions using dataset statistics"""
|
| 854 |
+
action_norm_stats = self.get_action_stats(unnorm_key)
|
| 855 |
+
|
| 856 |
+
if ACTION_PROPRIO_NORMALIZATION_TYPE == NormalizationType.BOUNDS:
|
| 857 |
+
mask = action_norm_stats.get("mask", np.ones_like(action_norm_stats["min"], dtype=bool))
|
| 858 |
+
action_high, action_low = np.array(action_norm_stats["max"]), np.array(action_norm_stats["min"])
|
| 859 |
+
elif ACTION_PROPRIO_NORMALIZATION_TYPE == NormalizationType.BOUNDS_Q99:
|
| 860 |
+
mask = action_norm_stats.get("mask", np.ones_like(action_norm_stats["q01"], dtype=bool))
|
| 861 |
+
action_high, action_low = np.array(action_norm_stats["q99"]), np.array(action_norm_stats["q01"])
|
| 862 |
+
else:
|
| 863 |
+
raise ValueError("Unsupported action/proprio normalization type detected!")
|
| 864 |
+
|
| 865 |
+
actions = np.where(
|
| 866 |
+
mask,
|
| 867 |
+
0.5 * (normalized_actions + 1) * (action_high - action_low + 1e-8) + action_low,
|
| 868 |
+
normalized_actions,
|
| 869 |
+
)
|
| 870 |
+
|
| 871 |
+
return actions
|
| 872 |
+
|
| 873 |
+
def _run_flow_matching_prediction(
|
| 874 |
+
self,
|
| 875 |
+
input_embeddings,
|
| 876 |
+
all_actions_mask,
|
| 877 |
+
noise,
|
| 878 |
+
action_head,
|
| 879 |
+
projected_patch_embeddings,
|
| 880 |
+
labels,
|
| 881 |
+
attention_mask,
|
| 882 |
+
NUM_PATCHES,
|
| 883 |
+
NUM_PROMPT_TOKENS,
|
| 884 |
+
noisy_action_projector
|
| 885 |
+
):
|
| 886 |
+
"""Run flow matching-based action prediction"""
|
| 887 |
+
# Clone embedding for reuse in each timestep
|
| 888 |
+
# orig_projected_patch_embeddings = projected_patch_embeddings.clone()
|
| 889 |
+
|
| 890 |
+
dt = -1.0 / action_head.num_flow_steps
|
| 891 |
+
dt = torch.tensor(dt, dtype=torch.bfloat16, device=labels.device)
|
| 892 |
+
|
| 893 |
+
curr_noisy_actions = noise
|
| 894 |
+
time = torch.tensor(1.0, dtype=torch.bfloat16, device=labels.device)
|
| 895 |
+
while time >= -dt / 2:
|
| 896 |
+
B = curr_noisy_actions.shape[0]
|
| 897 |
+
orig_curr_noisy_actions_shape = curr_noisy_actions.shape
|
| 898 |
+
curr_noisy_actions = curr_noisy_actions.reshape(B, -1).unsqueeze(-1)
|
| 899 |
+
noisy_action_features = noisy_action_projector(curr_noisy_actions)
|
| 900 |
+
curr_noisy_actions = curr_noisy_actions.reshape(orig_curr_noisy_actions_shape)
|
| 901 |
+
|
| 902 |
+
# Replace action token embeddings with noisy action embeddings
|
| 903 |
+
input_embeddings = self._replace_input_embeddings(
|
| 904 |
+
input_embeddings.clone(), all_actions_mask, noisy_action_features
|
| 905 |
+
)
|
| 906 |
+
|
| 907 |
+
# Build multimodal embeddings and attention mask
|
| 908 |
+
multimodal_embeddings, multimodal_attention_mask = self._build_multimodal_attention(
|
| 909 |
+
input_embeddings, projected_patch_embeddings, attention_mask
|
| 910 |
+
)
|
| 911 |
+
|
| 912 |
+
# Forward pass through language model
|
| 913 |
+
language_model_output = self.language_model(
|
| 914 |
+
input_ids=None,
|
| 915 |
+
attention_mask=multimodal_attention_mask,
|
| 916 |
+
position_ids=None,
|
| 917 |
+
past_key_values=None,
|
| 918 |
+
inputs_embeds=multimodal_embeddings,
|
| 919 |
+
labels=None,
|
| 920 |
+
use_cache=None,
|
| 921 |
+
output_attentions=False,
|
| 922 |
+
output_hidden_states=True,
|
| 923 |
+
return_dict=True,
|
| 924 |
+
)
|
| 925 |
+
|
| 926 |
+
# Extract hidden states for action portion of response
|
| 927 |
+
last_hidden_states = language_model_output.hidden_states[-1] # (B, seq_len, D)
|
| 928 |
+
actions_hidden_states = last_hidden_states[
|
| 929 |
+
:,
|
| 930 |
+
NUM_PATCHES + NUM_PROMPT_TOKENS : NUM_PATCHES + NUM_PROMPT_TOKENS + ACTION_DIM * NUM_ACTIONS_CHUNK,
|
| 931 |
+
:,
|
| 932 |
+
] # (B, act_chunk_len, D)
|
| 933 |
+
|
| 934 |
+
# Predict noise and update noisy actions: x_t -> x_{t-1}
|
| 935 |
+
flow_pred = action_head.predict_flow(actions_hidden_states)
|
| 936 |
+
curr_noisy_actions += dt * flow_pred
|
| 937 |
+
time += dt
|
| 938 |
+
curr_noisy_actions = curr_noisy_actions.reshape(NUM_ACTIONS_CHUNK, ACTION_DIM)
|
| 939 |
+
|
| 940 |
+
# Return final actions
|
| 941 |
+
return curr_noisy_actions.float().cpu().detach().numpy(), actions_hidden_states
|
| 942 |
+
|
| 943 |
+
|
| 944 |
+
def _run_diffusion_prediction(
|
| 945 |
+
self,
|
| 946 |
+
input_embeddings,
|
| 947 |
+
all_actions_mask,
|
| 948 |
+
noise,
|
| 949 |
+
action_head,
|
| 950 |
+
projected_patch_embeddings,
|
| 951 |
+
labels,
|
| 952 |
+
attention_mask,
|
| 953 |
+
NUM_PATCHES,
|
| 954 |
+
NUM_PROMPT_TOKENS,
|
| 955 |
+
noisy_action_projector,
|
| 956 |
+
):
|
| 957 |
+
"""Run diffusion-based action prediction"""
|
| 958 |
+
# Set diffusion timestep values
|
| 959 |
+
action_head.noise_scheduler.set_timesteps(action_head.num_diffusion_steps)
|
| 960 |
+
# Clone embedding for reuse in each timestep
|
| 961 |
+
orig_projected_patch_embeddings = projected_patch_embeddings.clone()
|
| 962 |
+
curr_noisy_actions = noise
|
| 963 |
+
|
| 964 |
+
# Reverse diffusion: Iteratively denoise to generate action prediction
|
| 965 |
+
for t in action_head.noise_scheduler.timesteps:
|
| 966 |
+
# Get diffusion model's noise prediction (conditioned on VLA latent embedding, current noisy action
|
| 967 |
+
# embedding, and diffusion timestep embedding)
|
| 968 |
+
timesteps = torch.Tensor([t]).to(labels.device)
|
| 969 |
+
diffusion_timestep_embeddings = (
|
| 970 |
+
action_head.time_encoder(timesteps).to(curr_noisy_actions.dtype).to(curr_noisy_actions.device)
|
| 971 |
+
) # (B, llm_dim)
|
| 972 |
+
diffusion_timestep_embeddings = diffusion_timestep_embeddings.unsqueeze(1) # (B, 1, llm_dim)
|
| 973 |
+
|
| 974 |
+
# [Diffusion] Replace the embeddings of the action tokens with noisy actions
|
| 975 |
+
# (Later on, the positional embeddings will be added to them)
|
| 976 |
+
|
| 977 |
+
# For simplicity, append diffusion timestep embedding to the end of projected vision tokens
|
| 978 |
+
projected_patch_embeddings = torch.cat(
|
| 979 |
+
(orig_projected_patch_embeddings, diffusion_timestep_embeddings), dim=1
|
| 980 |
+
)
|
| 981 |
+
|
| 982 |
+
# Reshape and project noisy actions into language embedding space
|
| 983 |
+
B = curr_noisy_actions.shape[0]
|
| 984 |
+
orig_curr_noisy_actions_shape = curr_noisy_actions.shape
|
| 985 |
+
curr_noisy_actions = curr_noisy_actions.reshape(B, -1).unsqueeze(-1)
|
| 986 |
+
noisy_action_features = noisy_action_projector(curr_noisy_actions)
|
| 987 |
+
curr_noisy_actions = curr_noisy_actions.reshape(orig_curr_noisy_actions_shape)
|
| 988 |
+
|
| 989 |
+
# Replace action token embeddings with noisy action embeddings
|
| 990 |
+
input_embeddings = self._replace_input_embeddings(
|
| 991 |
+
input_embeddings.clone(), all_actions_mask, noisy_action_features
|
| 992 |
+
)
|
| 993 |
+
|
| 994 |
+
# Build multimodal embeddings and attention mask
|
| 995 |
+
multimodal_embeddings, multimodal_attention_mask = self._build_multimodal_attention(
|
| 996 |
+
input_embeddings, projected_patch_embeddings, attention_mask
|
| 997 |
+
)
|
| 998 |
+
|
| 999 |
+
# Forward pass through language model
|
| 1000 |
+
language_model_output = self.language_model(
|
| 1001 |
+
input_ids=None,
|
| 1002 |
+
attention_mask=multimodal_attention_mask,
|
| 1003 |
+
position_ids=None,
|
| 1004 |
+
past_key_values=None,
|
| 1005 |
+
inputs_embeds=multimodal_embeddings,
|
| 1006 |
+
labels=None,
|
| 1007 |
+
use_cache=None,
|
| 1008 |
+
output_attentions=False,
|
| 1009 |
+
output_hidden_states=True,
|
| 1010 |
+
return_dict=True,
|
| 1011 |
+
)
|
| 1012 |
+
|
| 1013 |
+
# Extract hidden states for action portion of response
|
| 1014 |
+
last_hidden_states = language_model_output.hidden_states[-1] # (B, seq_len, D)
|
| 1015 |
+
actions_hidden_states = last_hidden_states[
|
| 1016 |
+
:,
|
| 1017 |
+
NUM_PATCHES + NUM_PROMPT_TOKENS : NUM_PATCHES + NUM_PROMPT_TOKENS + ACTION_DIM * NUM_ACTIONS_CHUNK,
|
| 1018 |
+
:,
|
| 1019 |
+
] # (B, act_chunk_len, D)
|
| 1020 |
+
|
| 1021 |
+
# Predict noise and update noisy actions: x_t -> x_{t-1}
|
| 1022 |
+
noise_pred = action_head.predict_noise(actions_hidden_states)
|
| 1023 |
+
curr_noisy_actions = action_head.noise_scheduler.step(noise_pred, t, curr_noisy_actions).prev_sample
|
| 1024 |
+
|
| 1025 |
+
curr_noisy_actions = curr_noisy_actions.reshape(NUM_ACTIONS_CHUNK, ACTION_DIM)
|
| 1026 |
+
|
| 1027 |
+
# Return final actions
|
| 1028 |
+
return curr_noisy_actions.float().cpu().detach().numpy(), actions_hidden_states
|
| 1029 |
+
|
| 1030 |
+
def _run_diffusion_prediction_V1(
|
| 1031 |
+
self,
|
| 1032 |
+
input_embeddings,
|
| 1033 |
+
all_actions_mask,
|
| 1034 |
+
noise,
|
| 1035 |
+
action_head,
|
| 1036 |
+
projected_patch_embeddings,
|
| 1037 |
+
labels,
|
| 1038 |
+
attention_mask,
|
| 1039 |
+
NUM_PATCHES,
|
| 1040 |
+
NUM_PROMPT_TOKENS,
|
| 1041 |
+
noisy_action_projector,
|
| 1042 |
+
proprio,
|
| 1043 |
+
proprio_projector,
|
| 1044 |
+
):
|
| 1045 |
+
"""Run diffusion-based action prediction"""
|
| 1046 |
+
# Set diffusion timestep values
|
| 1047 |
+
action_head.noise_scheduler.set_timesteps(action_head.num_diffusion_steps)
|
| 1048 |
+
# Clone embedding for reuse in each timestep
|
| 1049 |
+
curr_noisy_actions = noise
|
| 1050 |
+
|
| 1051 |
+
# import pdb; pdb.set_trace()
|
| 1052 |
+
|
| 1053 |
+
action_queries = self.action_queries.weight # (1, h)
|
| 1054 |
+
action_queries = action_queries.view(1, action_queries.shape[0], action_queries.shape[1]).repeat(input_embeddings.shape[0], 1, 1) # (b, chunk_size, h)
|
| 1055 |
+
# Replace action token embeddings with noisy action embeddings
|
| 1056 |
+
input_embeddings = self._replace_input_embeddings(input_embeddings.clone(), all_actions_mask, action_queries)
|
| 1057 |
+
# input_embeddings = torch.cat((input_embeddings, action_queries), dim=1) # (b, n_tokens+chunk_size, h)
|
| 1058 |
+
# action_attention_mask = None
|
| 1059 |
+
# action_attention_mask = torch.full(
|
| 1060 |
+
# (action_queries.shape[0], action_queries.shape[1]),
|
| 1061 |
+
# fill_value=True,
|
| 1062 |
+
# dtype=attention_mask.dtype,
|
| 1063 |
+
# device=attention_mask.device,)
|
| 1064 |
+
# attention_mask = torch.cat([attention_mask, action_attention_mask], dim=1)
|
| 1065 |
+
|
| 1066 |
+
# Build multimodal embeddings and attention mask
|
| 1067 |
+
multimodal_embeddings, multimodal_attention_mask = self._build_multimodal_attention(
|
| 1068 |
+
input_embeddings, projected_patch_embeddings, attention_mask
|
| 1069 |
+
)
|
| 1070 |
+
|
| 1071 |
+
# import pdb; pdb.set_trace()
|
| 1072 |
+
# Forward pass through language model
|
| 1073 |
+
language_model_output = self.language_model(
|
| 1074 |
+
input_ids=None,
|
| 1075 |
+
attention_mask=multimodal_attention_mask,
|
| 1076 |
+
position_ids=None,
|
| 1077 |
+
past_key_values=None,
|
| 1078 |
+
inputs_embeds=multimodal_embeddings,
|
| 1079 |
+
labels=None,
|
| 1080 |
+
use_cache=None,
|
| 1081 |
+
output_attentions=False,
|
| 1082 |
+
output_hidden_states=True,
|
| 1083 |
+
return_dict=True,
|
| 1084 |
+
)
|
| 1085 |
+
multi_layer_hidden_states = []
|
| 1086 |
+
# import pdb; pdb.set_trace()
|
| 1087 |
+
for item in language_model_output.hidden_states[0:]:
|
| 1088 |
+
# last_hidden_states = output.hidden_states[-1] # (B, seq_len, D)
|
| 1089 |
+
# Get hidden states for text portion of prompt+response (after the vision patches)
|
| 1090 |
+
text_hidden_states = item
|
| 1091 |
+
# Get hidden states for action portion of response
|
| 1092 |
+
actions_hidden_states = text_hidden_states[:, NUM_PATCHES+ NUM_PROMPT_TOKENS : NUM_PATCHES + NUM_PROMPT_TOKENS + NUM_TOKENS, :,].reshape(1, 1, NUM_TOKENS, -1).to(torch.bfloat16)
|
| 1093 |
+
# import pdb; pdb.set_trace()
|
| 1094 |
+
batch_size = item.shape[0]
|
| 1095 |
+
task_latten_states = item[:, :NUM_PATCHES].reshape(batch_size, 1, NUM_PATCHES , -1)
|
| 1096 |
+
all_hidden_states = torch.cat((task_latten_states, actions_hidden_states),2)
|
| 1097 |
+
multi_layer_hidden_states.append(all_hidden_states)
|
| 1098 |
+
# import pdb; pdb.set_trace()
|
| 1099 |
+
multi_layer_hidden_states = torch.cat(multi_layer_hidden_states, dim = 1)
|
| 1100 |
+
# import pdb; pdb.set_trace()
|
| 1101 |
+
|
| 1102 |
+
|
| 1103 |
+
|
| 1104 |
+
# Reverse diffusion: Iteratively denoise to generate action prediction
|
| 1105 |
+
for t in action_head.noise_scheduler.timesteps:
|
| 1106 |
+
# Get diffusion model's noise prediction (conditioned on VLA latent embedding, current noisy action
|
| 1107 |
+
# embedding, and diffusion timestep embedding)
|
| 1108 |
+
timesteps = torch.Tensor([t]).to(labels.device)
|
| 1109 |
+
diffusion_timestep_embeddings = (
|
| 1110 |
+
action_head.time_encoder(timesteps).to(curr_noisy_actions.dtype).to(curr_noisy_actions.device)
|
| 1111 |
+
) # (B, llm_dim)
|
| 1112 |
+
diffusion_timestep_embeddings = diffusion_timestep_embeddings.unsqueeze(1) # (B, 1, llm_dim)
|
| 1113 |
+
|
| 1114 |
+
# [Diffusion] Replace the embeddings of the action tokens with noisy actions
|
| 1115 |
+
# (Later on, the positional embeddings will be added to them)
|
| 1116 |
+
|
| 1117 |
+
# Reshape and project noisy actions into language embedding space
|
| 1118 |
+
B = curr_noisy_actions.shape[0]
|
| 1119 |
+
orig_curr_noisy_actions_shape = curr_noisy_actions.shape
|
| 1120 |
+
curr_noisy_actions = curr_noisy_actions.reshape(B, -1).unsqueeze(-1)
|
| 1121 |
+
curr_noisy_actions = curr_noisy_actions.reshape(orig_curr_noisy_actions_shape)
|
| 1122 |
+
|
| 1123 |
+
# Predict noise and update noisy actions: x_t -> x_{t-1}
|
| 1124 |
+
# noise_pred = action_head.predict_noise(actions_hidden_states)
|
| 1125 |
+
noise_pred = action_head.predict_noise(multi_layer_hidden_states,
|
| 1126 |
+
noisy_actions=curr_noisy_actions,
|
| 1127 |
+
timestep_embeddings = diffusion_timestep_embeddings,
|
| 1128 |
+
noisy_action_projector=noisy_action_projector,
|
| 1129 |
+
proprio=proprio ,
|
| 1130 |
+
proprio_projector=proprio_projector)
|
| 1131 |
+
|
| 1132 |
+
curr_noisy_actions = action_head.noise_scheduler.step(noise_pred, t, curr_noisy_actions).prev_sample
|
| 1133 |
+
curr_noisy_actions = curr_noisy_actions.reshape(NUM_ACTIONS_CHUNK, ACTION_DIM)
|
| 1134 |
+
|
| 1135 |
+
# Return final actions
|
| 1136 |
+
return curr_noisy_actions.float().cpu().detach().numpy(), actions_hidden_states
|
| 1137 |
+
|
| 1138 |
+
def _regression_or_discrete_prediction_V1(
|
| 1139 |
+
self,
|
| 1140 |
+
input_embeddings,
|
| 1141 |
+
all_actions_mask,
|
| 1142 |
+
projected_patch_embeddings,
|
| 1143 |
+
attention_mask,
|
| 1144 |
+
labels,
|
| 1145 |
+
NUM_PATCHES,
|
| 1146 |
+
NUM_PROMPT_TOKENS,
|
| 1147 |
+
action_head=None,
|
| 1148 |
+
proprio=None,
|
| 1149 |
+
proprio_projector=None,
|
| 1150 |
+
):
|
| 1151 |
+
"""Run L1 regression-based continuous action prediction or discrete action tokens prediction."""
|
| 1152 |
+
|
| 1153 |
+
action_queries = self.action_queries.weight # (1, h)
|
| 1154 |
+
action_queries = action_queries.view(1, action_queries.shape[0], action_queries.shape[1]).repeat(input_embeddings.shape[0], 1, 1) # (b, chunk_size, h)
|
| 1155 |
+
# Replace action token embeddings with noisy action embeddings
|
| 1156 |
+
input_embeddings = self._replace_input_embeddings(input_embeddings.clone(), all_actions_mask, action_queries)
|
| 1157 |
+
|
| 1158 |
+
# Build multimodal embeddings and attention mask
|
| 1159 |
+
multimodal_embeddings, multimodal_attention_mask = self._build_multimodal_attention(
|
| 1160 |
+
input_embeddings, projected_patch_embeddings, attention_mask
|
| 1161 |
+
)
|
| 1162 |
+
|
| 1163 |
+
# Forward pass through language model
|
| 1164 |
+
language_model_output = self.language_model(
|
| 1165 |
+
input_ids=None,
|
| 1166 |
+
attention_mask=multimodal_attention_mask,
|
| 1167 |
+
position_ids=None,
|
| 1168 |
+
past_key_values=None,
|
| 1169 |
+
inputs_embeds=multimodal_embeddings,
|
| 1170 |
+
labels=None,
|
| 1171 |
+
use_cache=None,
|
| 1172 |
+
output_attentions=False,
|
| 1173 |
+
output_hidden_states=True,
|
| 1174 |
+
return_dict=True,
|
| 1175 |
+
)
|
| 1176 |
+
|
| 1177 |
+
# Extract hidden states for action tokens
|
| 1178 |
+
multi_layer_hidden_states = []
|
| 1179 |
+
# import pdb; pdb.set_trace()
|
| 1180 |
+
for item in language_model_output.hidden_states[0:]:
|
| 1181 |
+
# last_hidden_states = output.hidden_states[-1] # (B, seq_len, D)
|
| 1182 |
+
# Get hidden states for text portion of prompt+response (after the vision patches)
|
| 1183 |
+
text_hidden_states = item
|
| 1184 |
+
# Get hidden states for action portion of response
|
| 1185 |
+
actions_hidden_states = text_hidden_states[:, NUM_PATCHES+ NUM_PROMPT_TOKENS : NUM_PATCHES + NUM_PROMPT_TOKENS + NUM_TOKENS, :,].reshape(1, 1, NUM_TOKENS, -1).to(torch.bfloat16)
|
| 1186 |
+
# import pdb; pdb.set_trace()
|
| 1187 |
+
batch_size = item.shape[0]
|
| 1188 |
+
task_latten_states = item[:, :NUM_PATCHES].reshape(batch_size, 1, NUM_PATCHES , -1)
|
| 1189 |
+
all_hidden_states = torch.cat((task_latten_states, actions_hidden_states),2)
|
| 1190 |
+
multi_layer_hidden_states.append(all_hidden_states)
|
| 1191 |
+
# import pdb; pdb.set_trace()
|
| 1192 |
+
multi_layer_hidden_states = torch.cat(multi_layer_hidden_states, dim = 1)
|
| 1193 |
+
# import pdb; pdb.set_trace()
|
| 1194 |
+
|
| 1195 |
+
# Handle different prediction methods
|
| 1196 |
+
if action_head is not None:
|
| 1197 |
+
# L1 regression prediction
|
| 1198 |
+
normalized_actions = action_head.predict_action(multi_layer_hidden_states,
|
| 1199 |
+
proprio=proprio,
|
| 1200 |
+
proprio_projector=proprio_projector)
|
| 1201 |
+
normalized_actions = normalized_actions.reshape(NUM_ACTIONS_CHUNK, ACTION_DIM)
|
| 1202 |
+
normalized_actions = normalized_actions.float().cpu().detach().numpy()
|
| 1203 |
+
else:
|
| 1204 |
+
# Discrete token-based prediction
|
| 1205 |
+
predicted_action_token_ids = (
|
| 1206 |
+
language_model_output.logits[
|
| 1207 |
+
:,
|
| 1208 |
+
NUM_PATCHES + NUM_PROMPT_TOKENS : NUM_PATCHES + NUM_PROMPT_TOKENS + ACTION_DIM * NUM_ACTIONS_CHUNK,
|
| 1209 |
+
]
|
| 1210 |
+
.argmax(dim=2)
|
| 1211 |
+
.cpu()
|
| 1212 |
+
.numpy()
|
| 1213 |
+
)
|
| 1214 |
+
discretized_actions = self.vocab_size - predicted_action_token_ids
|
| 1215 |
+
discretized_actions = np.clip(discretized_actions - 1, a_min=0, a_max=self.bin_centers.shape[0] - 1)
|
| 1216 |
+
normalized_actions = self.bin_centers[discretized_actions]
|
| 1217 |
+
normalized_actions = normalized_actions.reshape(NUM_ACTIONS_CHUNK, ACTION_DIM)
|
| 1218 |
+
|
| 1219 |
+
return normalized_actions, actions_hidden_states
|
| 1220 |
+
|
| 1221 |
+
def _regression_or_discrete_prediction(
|
| 1222 |
+
self,
|
| 1223 |
+
input_embeddings,
|
| 1224 |
+
all_actions_mask,
|
| 1225 |
+
projected_patch_embeddings,
|
| 1226 |
+
attention_mask,
|
| 1227 |
+
labels,
|
| 1228 |
+
NUM_PATCHES,
|
| 1229 |
+
NUM_PROMPT_TOKENS,
|
| 1230 |
+
action_head=None,
|
| 1231 |
+
):
|
| 1232 |
+
"""Run L1 regression-based continuous action prediction or discrete action tokens prediction."""
|
| 1233 |
+
# Zero out action token embeddings
|
| 1234 |
+
all_actions_mask = all_actions_mask.unsqueeze(-1) # (B, seq_len, 1)
|
| 1235 |
+
input_embeddings = input_embeddings * ~all_actions_mask
|
| 1236 |
+
|
| 1237 |
+
# Build multimodal embeddings and attention mask
|
| 1238 |
+
multimodal_embeddings, multimodal_attention_mask = self._build_multimodal_attention(
|
| 1239 |
+
input_embeddings, projected_patch_embeddings, attention_mask
|
| 1240 |
+
)
|
| 1241 |
+
|
| 1242 |
+
# Forward pass through language model
|
| 1243 |
+
language_model_output = self.language_model(
|
| 1244 |
+
input_ids=None,
|
| 1245 |
+
attention_mask=multimodal_attention_mask,
|
| 1246 |
+
position_ids=None,
|
| 1247 |
+
past_key_values=None,
|
| 1248 |
+
inputs_embeds=multimodal_embeddings,
|
| 1249 |
+
labels=None,
|
| 1250 |
+
use_cache=None,
|
| 1251 |
+
output_attentions=False,
|
| 1252 |
+
output_hidden_states=True,
|
| 1253 |
+
return_dict=True,
|
| 1254 |
+
)
|
| 1255 |
+
|
| 1256 |
+
# Extract hidden states for action tokens
|
| 1257 |
+
last_hidden_states = language_model_output.hidden_states[-1] # (B, seq_len, D)
|
| 1258 |
+
actions_hidden_states = last_hidden_states[
|
| 1259 |
+
:,
|
| 1260 |
+
NUM_PATCHES + NUM_PROMPT_TOKENS : NUM_PATCHES + NUM_PROMPT_TOKENS + ACTION_DIM * NUM_ACTIONS_CHUNK,
|
| 1261 |
+
:,
|
| 1262 |
+
] # (B, act_chunk_len, D)
|
| 1263 |
+
|
| 1264 |
+
# Handle different prediction methods
|
| 1265 |
+
if action_head is not None:
|
| 1266 |
+
# L1 regression prediction
|
| 1267 |
+
normalized_actions = action_head.predict_action(actions_hidden_states)
|
| 1268 |
+
normalized_actions = normalized_actions.reshape(NUM_ACTIONS_CHUNK, ACTION_DIM)
|
| 1269 |
+
normalized_actions = normalized_actions.float().cpu().detach().numpy()
|
| 1270 |
+
else:
|
| 1271 |
+
# Discrete token-based prediction
|
| 1272 |
+
predicted_action_token_ids = (
|
| 1273 |
+
language_model_output.logits[
|
| 1274 |
+
:,
|
| 1275 |
+
NUM_PATCHES + NUM_PROMPT_TOKENS : NUM_PATCHES + NUM_PROMPT_TOKENS + ACTION_DIM * NUM_ACTIONS_CHUNK,
|
| 1276 |
+
]
|
| 1277 |
+
.argmax(dim=2)
|
| 1278 |
+
.cpu()
|
| 1279 |
+
.numpy()
|
| 1280 |
+
)
|
| 1281 |
+
discretized_actions = self.vocab_size - predicted_action_token_ids
|
| 1282 |
+
discretized_actions = np.clip(discretized_actions - 1, a_min=0, a_max=self.bin_centers.shape[0] - 1)
|
| 1283 |
+
normalized_actions = self.bin_centers[discretized_actions]
|
| 1284 |
+
normalized_actions = normalized_actions.reshape(NUM_ACTIONS_CHUNK, ACTION_DIM)
|
| 1285 |
+
|
| 1286 |
+
return normalized_actions, actions_hidden_states
|
| 1287 |
+
|
| 1288 |
+
def predict_action(
|
| 1289 |
+
self,
|
| 1290 |
+
input_ids: Optional[torch.LongTensor] = None,
|
| 1291 |
+
unnorm_key: Optional[str] = None,
|
| 1292 |
+
proprio=None,
|
| 1293 |
+
proprio_projector=None,
|
| 1294 |
+
action_head=None,
|
| 1295 |
+
noisy_action_projector=None,
|
| 1296 |
+
use_film: bool = False,
|
| 1297 |
+
**kwargs: str,
|
| 1298 |
+
) -> np.ndarray:
|
| 1299 |
+
"""Predict actions from input sequence, with options for different prediction methods.
|
| 1300 |
+
|
| 1301 |
+
Args:
|
| 1302 |
+
input_ids: Input token ids
|
| 1303 |
+
unnorm_key: Key for unnormalization statistics
|
| 1304 |
+
proprio: Proprioceptive features
|
| 1305 |
+
proprio_projector: Projector for proprioceptive features
|
| 1306 |
+
action_head: Optional head for L1 regression or diffusion-based prediction
|
| 1307 |
+
noisy_action_projector: Projector for noisy actions in diffusion-based prediction
|
| 1308 |
+
use_film: Whether to use FiLM conditioning
|
| 1309 |
+
**kwargs: Additional arguments including pixel_values and attention_mask
|
| 1310 |
+
|
| 1311 |
+
Returns:
|
| 1312 |
+
Tuple of (unnormalized_actions, action_hidden_states)
|
| 1313 |
+
"""
|
| 1314 |
+
# import pdb; pdb.set_trace()
|
| 1315 |
+
# If the special empty token ('') does not already appear after the colon (':') token in the prompt
|
| 1316 |
+
# (after "OUT:" or "ASSISTANT:"), insert it to match the inputs seen at training time
|
| 1317 |
+
|
| 1318 |
+
# 如果是 minivla, 不用加这个判断!!!!!
|
| 1319 |
+
# if not torch.all(input_ids[:, -1] == 29871):
|
| 1320 |
+
# input_ids = torch.cat(
|
| 1321 |
+
# (input_ids, torch.unsqueeze(torch.Tensor([29871]).long(), dim=0).to(input_ids.device)), dim=1
|
| 1322 |
+
# )
|
| 1323 |
+
|
| 1324 |
+
|
| 1325 |
+
pixel_values = kwargs["pixel_values"] # [1, 12, 224, 224]
|
| 1326 |
+
attention_mask = kwargs["attention_mask"] #
|
| 1327 |
+
|
| 1328 |
+
# Create fake labels tensor (needed for action mask)
|
| 1329 |
+
labels = input_ids.clone()
|
| 1330 |
+
labels[:] = IGNORE_INDEX
|
| 1331 |
+
|
| 1332 |
+
# Get number of tokens in prompt (excluding the start token)
|
| 1333 |
+
NUM_PROMPT_TOKENS = input_ids.shape[-1] - 1 # Subtract action tokens and stop token
|
| 1334 |
+
|
| 1335 |
+
# import pdb; pdb.set_trace()
|
| 1336 |
+
|
| 1337 |
+
# Prepare inputs by adding necessary tokens
|
| 1338 |
+
input_ids, attention_mask = self._prepare_input_for_action_prediction(input_ids, attention_mask)
|
| 1339 |
+
|
| 1340 |
+
# Update labels tensor for action mask computation later
|
| 1341 |
+
labels = self._prepare_labels_for_action_prediction(labels, input_ids)
|
| 1342 |
+
|
| 1343 |
+
# Get input embeddings and action masks
|
| 1344 |
+
input_embeddings = self.get_input_embeddings()(input_ids)
|
| 1345 |
+
all_actions_mask = self._process_action_masks(labels)
|
| 1346 |
+
|
| 1347 |
+
# Extract language embeddings
|
| 1348 |
+
language_embeddings = input_embeddings[~all_actions_mask].reshape(
|
| 1349 |
+
input_embeddings.shape[0], -1, input_embeddings.shape[2]
|
| 1350 |
+
)
|
| 1351 |
+
|
| 1352 |
+
# Process vision features
|
| 1353 |
+
projected_patch_embeddings = self._process_vision_features(pixel_values, language_embeddings, use_film)
|
| 1354 |
+
|
| 1355 |
+
# Add proprioceptive features if provided
|
| 1356 |
+
use_proprio = proprio_projector is not None and proprio is not None
|
| 1357 |
+
if use_proprio:
|
| 1358 |
+
proprio = torch.Tensor(proprio).to(projected_patch_embeddings.device, dtype=projected_patch_embeddings.dtype)
|
| 1359 |
+
if self.version == 'v1':
|
| 1360 |
+
pass
|
| 1361 |
+
else:
|
| 1362 |
+
projected_patch_embeddings = self._process_proprio_features(
|
| 1363 |
+
projected_patch_embeddings, proprio, proprio_projector
|
| 1364 |
+
)
|
| 1365 |
+
# import pdb; pdb.set_trace()
|
| 1366 |
+
# Use diffusion if provided, otherwise use regression or discrete prediction
|
| 1367 |
+
use_diffusion = noisy_action_projector is not None and hasattr(action_head, "noise_scheduler")
|
| 1368 |
+
use_flow_matching = noisy_action_projector is not None and hasattr(action_head, "sample_actions")
|
| 1369 |
+
|
| 1370 |
+
|
| 1371 |
+
# Calculate number of patches (including proprio token and/or diffusion timestep embedding if present)
|
| 1372 |
+
NUM_PATCHES = self.vision_backbone.get_num_patches() * self.vision_backbone.get_num_images_in_input()
|
| 1373 |
+
if self.version == 'v1':
|
| 1374 |
+
# if use_diffusion:
|
| 1375 |
+
# NUM_PATCHES += 1
|
| 1376 |
+
pass
|
| 1377 |
+
else:
|
| 1378 |
+
if use_proprio:
|
| 1379 |
+
NUM_PATCHES += 1
|
| 1380 |
+
if use_diffusion:
|
| 1381 |
+
NUM_PATCHES += 1
|
| 1382 |
+
|
| 1383 |
+
# import pdb; pdb.set_trace()
|
| 1384 |
+
if use_flow_matching:
|
| 1385 |
+
# Sample random noise with shape equal to output action, used as the starting state for flow matching
|
| 1386 |
+
noise = action_head.sample_noise((1, NUM_ACTIONS_CHUNK, ACTION_DIM),device=input_embeddings.device, dtype=input_embeddings.dtype)
|
| 1387 |
+
|
| 1388 |
+
# Run flow matching-based prediction
|
| 1389 |
+
normalized_actions, actions_hidden_states = self._run_flow_matching_prediction(
|
| 1390 |
+
input_embeddings,
|
| 1391 |
+
all_actions_mask,
|
| 1392 |
+
noise,
|
| 1393 |
+
action_head,
|
| 1394 |
+
projected_patch_embeddings,
|
| 1395 |
+
labels,
|
| 1396 |
+
attention_mask,
|
| 1397 |
+
NUM_PATCHES,
|
| 1398 |
+
NUM_PROMPT_TOKENS,
|
| 1399 |
+
noisy_action_projector
|
| 1400 |
+
)
|
| 1401 |
+
elif use_diffusion:
|
| 1402 |
+
# Sample random noise with shape equal to output action, used as the starting state for reverse diffusion
|
| 1403 |
+
noise = torch.randn(
|
| 1404 |
+
size=(1, NUM_ACTIONS_CHUNK, ACTION_DIM), device=input_embeddings.device, dtype=input_embeddings.dtype
|
| 1405 |
+
)
|
| 1406 |
+
# import pdb; pdb.set_trace()
|
| 1407 |
+
if self.version == 'v1':
|
| 1408 |
+
|
| 1409 |
+
# import pdb; pdb.set_trace()
|
| 1410 |
+
# Run diffusion-based prediction
|
| 1411 |
+
normalized_actions, actions_hidden_states = self._run_diffusion_prediction_V1(
|
| 1412 |
+
input_embeddings, # [1, 86, 4096]
|
| 1413 |
+
all_actions_mask, # [1, 86]
|
| 1414 |
+
noise, # [1,8, 7]
|
| 1415 |
+
action_head,
|
| 1416 |
+
projected_patch_embeddings, # [1, 512, 4096]
|
| 1417 |
+
labels, # [1, 86]
|
| 1418 |
+
attention_mask, # [1, 86]
|
| 1419 |
+
NUM_PATCHES, # 512
|
| 1420 |
+
NUM_PROMPT_TOKENS, # 28
|
| 1421 |
+
noisy_action_projector,
|
| 1422 |
+
proprio, # [8]
|
| 1423 |
+
proprio_projector,
|
| 1424 |
+
)
|
| 1425 |
+
else:
|
| 1426 |
+
# Run diffusion-based prediction
|
| 1427 |
+
normalized_actions, actions_hidden_states = self._run_diffusion_prediction(
|
| 1428 |
+
input_embeddings,
|
| 1429 |
+
all_actions_mask,
|
| 1430 |
+
noise,
|
| 1431 |
+
action_head,
|
| 1432 |
+
projected_patch_embeddings,
|
| 1433 |
+
labels,
|
| 1434 |
+
attention_mask,
|
| 1435 |
+
NUM_PATCHES,
|
| 1436 |
+
NUM_PROMPT_TOKENS,
|
| 1437 |
+
noisy_action_projector,
|
| 1438 |
+
)
|
| 1439 |
+
|
| 1440 |
+
else:
|
| 1441 |
+
if self.version == 'v1':
|
| 1442 |
+
# Run regression or discrete token-based prediction
|
| 1443 |
+
normalized_actions, actions_hidden_states = self._regression_or_discrete_prediction_V1(
|
| 1444 |
+
input_embeddings,
|
| 1445 |
+
all_actions_mask,
|
| 1446 |
+
projected_patch_embeddings,
|
| 1447 |
+
attention_mask,
|
| 1448 |
+
labels,
|
| 1449 |
+
NUM_PATCHES,
|
| 1450 |
+
NUM_PROMPT_TOKENS,
|
| 1451 |
+
action_head=action_head,
|
| 1452 |
+
proprio=proprio, # [8]
|
| 1453 |
+
proprio_projector=proprio_projector,
|
| 1454 |
+
)
|
| 1455 |
+
else:
|
| 1456 |
+
# Run regression or discrete token-based prediction
|
| 1457 |
+
normalized_actions, actions_hidden_states = self._regression_or_discrete_prediction(
|
| 1458 |
+
input_embeddings,
|
| 1459 |
+
all_actions_mask,
|
| 1460 |
+
projected_patch_embeddings,
|
| 1461 |
+
attention_mask,
|
| 1462 |
+
labels,
|
| 1463 |
+
NUM_PATCHES,
|
| 1464 |
+
NUM_PROMPT_TOKENS,
|
| 1465 |
+
action_head,
|
| 1466 |
+
)
|
| 1467 |
+
|
| 1468 |
+
# import pdb; pdb.set_trace()
|
| 1469 |
+
# Unnormalize predicted actions
|
| 1470 |
+
actions = self._unnormalize_actions(normalized_actions, unnorm_key)
|
| 1471 |
+
|
| 1472 |
+
return actions, actions_hidden_states
|
| 1473 |
+
|
| 1474 |
+
@staticmethod
|
| 1475 |
+
def _check_unnorm_key(norm_stats: Dict[str, Dict[str, Any]], unnorm_key: Optional[str]) -> str:
|
| 1476 |
+
"""Validate and resolve the unnormalization key for action statistics"""
|
| 1477 |
+
if unnorm_key is None:
|
| 1478 |
+
assert len(norm_stats) == 1, (
|
| 1479 |
+
f"Your model was trained on more than one dataset, "
|
| 1480 |
+
f"please pass a `unnorm_key` from the following options to choose the statistics "
|
| 1481 |
+
f"used for un-normalizing actions: {norm_stats.keys()}"
|
| 1482 |
+
)
|
| 1483 |
+
unnorm_key = next(iter(norm_stats.keys()))
|
| 1484 |
+
|
| 1485 |
+
assert unnorm_key in norm_stats, (
|
| 1486 |
+
f"The `unnorm_key` you chose is not in the set of available dataset statistics, "
|
| 1487 |
+
f"please choose from: {norm_stats.keys()}"
|
| 1488 |
+
)
|
| 1489 |
+
return unnorm_key
|
| 1490 |
+
|
| 1491 |
+
def get_action_dim(self, unnorm_key: Optional[str] = None) -> int:
|
| 1492 |
+
"""Get the dimensionality of the policy's action space."""
|
| 1493 |
+
unnorm_key = self._check_unnorm_key(self.norm_stats, unnorm_key)
|
| 1494 |
+
return len(self.norm_stats[unnorm_key]["action"]["min"])
|
| 1495 |
+
|
| 1496 |
+
def get_action_stats(self, unnorm_key: Optional[str] = None) -> Dict[str, Any]:
|
| 1497 |
+
"""Get all the logged statistics for the given dataset."""
|
| 1498 |
+
unnorm_key = self._check_unnorm_key(self.norm_stats, unnorm_key)
|
| 1499 |
+
return self.norm_stats[unnorm_key]["action"]
|
preprocessor_config.json
ADDED
|
@@ -0,0 +1,114 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"auto_map": {
|
| 3 |
+
"AutoImageProcessor": "processing_prismatic.PrismaticImageProcessor",
|
| 4 |
+
"AutoProcessor": "processing_prismatic.PrismaticProcessor"
|
| 5 |
+
},
|
| 6 |
+
"image_processor_type": "PrismaticImageProcessor",
|
| 7 |
+
"image_resize_strategy": "resize-naive",
|
| 8 |
+
"input_sizes": [
|
| 9 |
+
[
|
| 10 |
+
3,
|
| 11 |
+
224,
|
| 12 |
+
224
|
| 13 |
+
],
|
| 14 |
+
[
|
| 15 |
+
3,
|
| 16 |
+
224,
|
| 17 |
+
224
|
| 18 |
+
]
|
| 19 |
+
],
|
| 20 |
+
"interpolations": [
|
| 21 |
+
"bicubic",
|
| 22 |
+
"bicubic"
|
| 23 |
+
],
|
| 24 |
+
"means": [
|
| 25 |
+
[
|
| 26 |
+
0.485,
|
| 27 |
+
0.456,
|
| 28 |
+
0.406
|
| 29 |
+
],
|
| 30 |
+
[
|
| 31 |
+
0.5,
|
| 32 |
+
0.5,
|
| 33 |
+
0.5
|
| 34 |
+
]
|
| 35 |
+
],
|
| 36 |
+
"processor_class": "PrismaticProcessor",
|
| 37 |
+
"stds": [
|
| 38 |
+
[
|
| 39 |
+
0.229,
|
| 40 |
+
0.224,
|
| 41 |
+
0.225
|
| 42 |
+
],
|
| 43 |
+
[
|
| 44 |
+
0.5,
|
| 45 |
+
0.5,
|
| 46 |
+
0.5
|
| 47 |
+
]
|
| 48 |
+
],
|
| 49 |
+
"tvf_crop_params": [
|
| 50 |
+
{
|
| 51 |
+
"output_size": [
|
| 52 |
+
224,
|
| 53 |
+
224
|
| 54 |
+
]
|
| 55 |
+
},
|
| 56 |
+
{
|
| 57 |
+
"output_size": [
|
| 58 |
+
224,
|
| 59 |
+
224
|
| 60 |
+
]
|
| 61 |
+
}
|
| 62 |
+
],
|
| 63 |
+
"tvf_do_letterbox": false,
|
| 64 |
+
"tvf_letterbox_fill": null,
|
| 65 |
+
"tvf_normalize_params": [
|
| 66 |
+
{
|
| 67 |
+
"inplace": false,
|
| 68 |
+
"mean": [
|
| 69 |
+
0.484375,
|
| 70 |
+
0.455078125,
|
| 71 |
+
0.40625
|
| 72 |
+
],
|
| 73 |
+
"std": [
|
| 74 |
+
0.228515625,
|
| 75 |
+
0.2236328125,
|
| 76 |
+
0.224609375
|
| 77 |
+
]
|
| 78 |
+
},
|
| 79 |
+
{
|
| 80 |
+
"inplace": false,
|
| 81 |
+
"mean": [
|
| 82 |
+
0.5,
|
| 83 |
+
0.5,
|
| 84 |
+
0.5
|
| 85 |
+
],
|
| 86 |
+
"std": [
|
| 87 |
+
0.5,
|
| 88 |
+
0.5,
|
| 89 |
+
0.5
|
| 90 |
+
]
|
| 91 |
+
}
|
| 92 |
+
],
|
| 93 |
+
"tvf_resize_params": [
|
| 94 |
+
{
|
| 95 |
+
"antialias": true,
|
| 96 |
+
"interpolation": 3,
|
| 97 |
+
"max_size": null,
|
| 98 |
+
"size": [
|
| 99 |
+
224,
|
| 100 |
+
224
|
| 101 |
+
]
|
| 102 |
+
},
|
| 103 |
+
{
|
| 104 |
+
"antialias": true,
|
| 105 |
+
"interpolation": 3,
|
| 106 |
+
"max_size": null,
|
| 107 |
+
"size": [
|
| 108 |
+
224,
|
| 109 |
+
224
|
| 110 |
+
]
|
| 111 |
+
}
|
| 112 |
+
],
|
| 113 |
+
"use_fused_vision_backbone": true
|
| 114 |
+
}
|
processing_prismatic.py
ADDED
|
@@ -0,0 +1,257 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
processing_prismatic.py
|
| 3 |
+
|
| 4 |
+
HuggingFace-style preprocessor definitions for Prismatic VLMs, inheriting from `ProcessorMixin`. Default configuration
|
| 5 |
+
specifies `siglip-224px+7b`.
|
| 6 |
+
"""
|
| 7 |
+
|
| 8 |
+
from typing import Any, ClassVar, List, Optional, Tuple, Union
|
| 9 |
+
|
| 10 |
+
import timm.data
|
| 11 |
+
import torch
|
| 12 |
+
import torchvision.transforms.functional as TVF
|
| 13 |
+
from PIL import Image
|
| 14 |
+
from torchvision.transforms import CenterCrop, Compose, Normalize, Resize, ToTensor
|
| 15 |
+
from transformers import PreTrainedTokenizerBase
|
| 16 |
+
from transformers.image_processing_utils import BatchFeature, ImageProcessingMixin
|
| 17 |
+
from transformers.processing_utils import ProcessorMixin
|
| 18 |
+
from transformers.tokenization_utils import PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy
|
| 19 |
+
from transformers.utils import TensorType
|
| 20 |
+
|
| 21 |
+
|
| 22 |
+
# === Image Processing ===
|
| 23 |
+
def letterbox_pad_transform(image: Image.Image, padding_fill_value: Tuple[int, int, int]) -> Image.Image:
|
| 24 |
+
"""Given a PIL.Image, pad to square by adding a symmetric border around the height/width."""
|
| 25 |
+
(w, h), max_wh = image.size, max(image.size)
|
| 26 |
+
horizontal_pad, vertical_pad = int((max_wh - w) / 2), int((max_wh - h) / 2)
|
| 27 |
+
padding = (horizontal_pad, vertical_pad, horizontal_pad, vertical_pad)
|
| 28 |
+
|
| 29 |
+
return TVF.pad(image, padding, fill=padding_fill_value, padding_mode="constant")
|
| 30 |
+
|
| 31 |
+
|
| 32 |
+
class PrismaticImageProcessor(ImageProcessingMixin):
|
| 33 |
+
model_input_names: ClassVar[List[str]] = ["pixel_values"]
|
| 34 |
+
|
| 35 |
+
def __init__(
|
| 36 |
+
self,
|
| 37 |
+
use_fused_vision_backbone: bool = False,
|
| 38 |
+
image_resize_strategy: str = "letterbox",
|
| 39 |
+
input_sizes: Optional[List[Tuple[int, int, int]]] = None,
|
| 40 |
+
interpolations: Optional[List[str]] = None,
|
| 41 |
+
means: Optional[List[Tuple[float, float, float]]] = None,
|
| 42 |
+
stds: Optional[List[Tuple[float, float, float]]] = None,
|
| 43 |
+
**kwargs: str,
|
| 44 |
+
) -> None:
|
| 45 |
+
"""
|
| 46 |
+
Initialize a PrismaticImageProcessor as a wrapper around a torchvision transform; this transform will be
|
| 47 |
+
created by TIMM, and edited to follow our custom `image_resize_strategy` logic.
|
| 48 |
+
|
| 49 |
+
@param use_fused_vision_backbone: Boolean indicating single or fused (dual) vision backbone
|
| 50 |
+
@param image_resize_strategy: Prismatic image resize strategy in < resize-naive | resize-crop | letterbox >
|
| 51 |
+
@param input_size: [TIMM :: `data_cfg`] Input image size as tuple (channels, width, height)
|
| 52 |
+
@param interpolation: [TIMM :: `data_cfg`] Interpolation as string (default: "bicubic")
|
| 53 |
+
@param mean: [TIMM :: `data_cfg`] Normalization mean as float tuple (or two-tuple if `fused_backbone`)
|
| 54 |
+
@param std: [TIMM :: `data_cfg`] Normalization std as float tuple (or two-tuple if `fused_backbone`)
|
| 55 |
+
"""
|
| 56 |
+
self.use_fused_vision_backbone = use_fused_vision_backbone
|
| 57 |
+
self.image_resize_strategy = image_resize_strategy
|
| 58 |
+
|
| 59 |
+
# Handle `None` default values
|
| 60 |
+
input_sizes = [(3, 224, 224)] if input_sizes is None else input_sizes
|
| 61 |
+
means = [(0.5, 0.5, 0.5)] if means is None else means
|
| 62 |
+
stds = [(0.5, 0.5, 0.5)] if stds is None else stds
|
| 63 |
+
|
| 64 |
+
# TIMM `data_cfg` Parameters
|
| 65 |
+
self.input_sizes, self.interpolations, self.means, self.stds = input_sizes, interpolations, means, stds
|
| 66 |
+
|
| 67 |
+
# Grab torchvision transforms via TIMM =>> need to parse for specific "functional" transform values!
|
| 68 |
+
self.tvf_resize_params, self.tvf_crop_params, self.tvf_normalize_params = [], [], []
|
| 69 |
+
self.tvf_do_letterbox, self.tvf_letterbox_fill = False, None
|
| 70 |
+
|
| 71 |
+
for idx in range(len(input_sizes)):
|
| 72 |
+
transform = timm.data.create_transform(
|
| 73 |
+
input_size=self.input_sizes[idx],
|
| 74 |
+
interpolation=self.interpolations[idx],
|
| 75 |
+
mean=self.means[idx],
|
| 76 |
+
std=self.stds[idx],
|
| 77 |
+
crop_pct=1.0, # Set to 1.0 to ignore cropping (initial Resize sets `input_size`)
|
| 78 |
+
crop_mode="center", # Default crop mode -- no-op when `crop_pct == 1.0`
|
| 79 |
+
is_training=False, # No image augmentations when loading the transform!
|
| 80 |
+
)
|
| 81 |
+
|
| 82 |
+
# [Validation] Ensure appropriate transform structure, expected sizes
|
| 83 |
+
if not (
|
| 84 |
+
isinstance(transform, Compose)
|
| 85 |
+
and (len(transform.transforms) == 4)
|
| 86 |
+
and isinstance(transform.transforms[0], Resize)
|
| 87 |
+
and isinstance(transform.transforms[1], CenterCrop)
|
| 88 |
+
and isinstance(transform.transforms[2], ToTensor)
|
| 89 |
+
and isinstance(transform.transforms[3], Normalize)
|
| 90 |
+
and (transform.transforms[0].size == self.input_sizes[idx][-1])
|
| 91 |
+
and (transform.transforms[1].size == self.input_sizes[idx][-2:])
|
| 92 |
+
):
|
| 93 |
+
raise ValueError(f"Unexpected TIMM image transformation structure/sizes: `{transform}`")
|
| 94 |
+
|
| 95 |
+
# HF Image Processors *must* be JSON-serializable; as such, cannot have torchvision. as an attribute.
|
| 96 |
+
# => Instead, we're going to parse the transform and call "torchvision.transforms.functional" (`tvf`)
|
| 97 |
+
resize_t, crop_t, norm_t = transform.transforms[0], transform.transforms[1], transform.transforms[3]
|
| 98 |
+
self.tvf_resize_params.append(
|
| 99 |
+
{
|
| 100 |
+
"size": resize_t.size,
|
| 101 |
+
"interpolation": TVF.pil_modes_mapping[resize_t.interpolation],
|
| 102 |
+
"max_size": None,
|
| 103 |
+
"antialias": True,
|
| 104 |
+
}
|
| 105 |
+
)
|
| 106 |
+
self.tvf_crop_params.append({"output_size": crop_t.size})
|
| 107 |
+
self.tvf_normalize_params.append(
|
| 108 |
+
{
|
| 109 |
+
"mean": norm_t.mean.float().numpy().tolist(),
|
| 110 |
+
"std": norm_t.std.float().numpy().tolist(),
|
| 111 |
+
"inplace": False,
|
| 112 |
+
}
|
| 113 |
+
)
|
| 114 |
+
self.tvf_do_letterbox, self.tvf_letterbox_fill = False, None
|
| 115 |
+
|
| 116 |
+
# Handle Prismatic `image_resize_strategy`
|
| 117 |
+
if self.image_resize_strategy == "resize-naive":
|
| 118 |
+
self.tvf_resize_params[idx]["size"] = (resize_t.size, resize_t.size)
|
| 119 |
+
elif self.image_resize_strategy == "letterbox":
|
| 120 |
+
self.tvf_do_letterbox, self.tvf_letterbox_fill = True, tuple([int(x * 255) for x in self.means[idx]])
|
| 121 |
+
elif self.image_resize_strategy == "resize-crop":
|
| 122 |
+
pass
|
| 123 |
+
else:
|
| 124 |
+
raise ValueError(f"Image resize strategy `{self.image_resize_strategy}` is not supported!")
|
| 125 |
+
|
| 126 |
+
# Dispatch **kwargs to super()
|
| 127 |
+
super().__init__(**kwargs)
|
| 128 |
+
|
| 129 |
+
def apply_transform(self, img: Image.Image) -> torch.Tensor:
|
| 130 |
+
"""Apply `functional` variant of TIMM's Transform = Compose([Resize -> CenterCrop -> ToTensor -> Normalize])"""
|
| 131 |
+
if self.tvf_do_letterbox:
|
| 132 |
+
img = letterbox_pad_transform(img, self.tvf_letterbox_fill)
|
| 133 |
+
|
| 134 |
+
# [Contract] Fused Backbones expect "channel-stacked" inputs; we'll unpack on the model side!
|
| 135 |
+
imgs_t = []
|
| 136 |
+
for idx in range(len(self.input_sizes)):
|
| 137 |
+
img_idx = TVF.resize(img, **self.tvf_resize_params[idx])
|
| 138 |
+
img_idx = TVF.center_crop(img_idx, **self.tvf_crop_params[idx])
|
| 139 |
+
img_idx_t = TVF.to_tensor(img_idx)
|
| 140 |
+
img_idx_t = TVF.normalize(img_idx_t, **self.tvf_normalize_params[idx])
|
| 141 |
+
imgs_t.append(img_idx_t)
|
| 142 |
+
|
| 143 |
+
# [Contract] `imgs_t` is a list of Tensors of shape [3, input_size, input_size]; stack along dim = 0
|
| 144 |
+
img_t = torch.vstack(imgs_t)
|
| 145 |
+
|
| 146 |
+
return img_t
|
| 147 |
+
|
| 148 |
+
def preprocess(
|
| 149 |
+
self,
|
| 150 |
+
images: Union[Image.Image, List[Image.Image]],
|
| 151 |
+
return_tensors: Optional[Union[str, TensorType]] = None,
|
| 152 |
+
**_: str,
|
| 153 |
+
) -> BatchFeature:
|
| 154 |
+
"""
|
| 155 |
+
Preprocess an image (or batch of images); note that unlike the `transformers :: BaseImageProcessor` we
|
| 156 |
+
explicitly only handle PIL.Image.Image instances for simplicity.
|
| 157 |
+
|
| 158 |
+
@param images: A (batch of) PIL.Image.Image instance(s) to preprocess.
|
| 159 |
+
@param return_tensors: BatchFeature default Tensor format (e.g., "pt" for torch); if None, returns np.ndarray
|
| 160 |
+
|
| 161 |
+
@return: Instance of `transformers :: BatchFeature` with a single key "pixel_values"
|
| 162 |
+
"""
|
| 163 |
+
if not isinstance(images, list):
|
| 164 |
+
images = [images]
|
| 165 |
+
|
| 166 |
+
# Apply `self.img_transform` to each image (will return list of torch.Tensors); stack into "batched" Tensor
|
| 167 |
+
pixel_values = torch.stack([self.apply_transform(img.convert("RGB")) for img in images])
|
| 168 |
+
|
| 169 |
+
# Return BatchFeature =>> note that for compatibility, constructor expects Dict[str, np.ndarray], so we convert
|
| 170 |
+
return BatchFeature(data={"pixel_values": pixel_values.float().numpy()}, tensor_type=return_tensors)
|
| 171 |
+
|
| 172 |
+
def __call__(self, images: Union[Image.Image, List[Image.Image]], **kwargs) -> BatchFeature:
|
| 173 |
+
return self.preprocess(images, **kwargs)
|
| 174 |
+
|
| 175 |
+
|
| 176 |
+
# === PrismaticProcessor =>> Wraps both ImageProcessor and Tokenizer ===
|
| 177 |
+
# =>> https://github.com/huggingface/transformers/blob/main/src/transformers/models/llava/processing_llava.py
|
| 178 |
+
class PrismaticProcessor(ProcessorMixin):
|
| 179 |
+
attributes: ClassVar[List[str]] = ["image_processor", "tokenizer"]
|
| 180 |
+
image_processor_class: str = "AutoImageProcessor"
|
| 181 |
+
tokenizer_class: str = "AutoTokenizer"
|
| 182 |
+
|
| 183 |
+
def __init__(
|
| 184 |
+
self,
|
| 185 |
+
image_processor: Optional[ImageProcessingMixin] = None,
|
| 186 |
+
tokenizer: Optional[PreTrainedTokenizerBase] = None,
|
| 187 |
+
) -> None:
|
| 188 |
+
super().__init__(image_processor, tokenizer)
|
| 189 |
+
|
| 190 |
+
def __call__(
|
| 191 |
+
self,
|
| 192 |
+
text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]],
|
| 193 |
+
images: Union[Image.Image, List[Image.Image]],
|
| 194 |
+
padding: Union[bool, str, PaddingStrategy] = False,
|
| 195 |
+
truncation: Optional[Union[bool, str, TruncationStrategy]] = None,
|
| 196 |
+
max_length: Optional[int] = None,
|
| 197 |
+
return_tensors: Optional[Union[str, TensorType]] = TensorType.PYTORCH,
|
| 198 |
+
) -> BatchFeature:
|
| 199 |
+
"""
|
| 200 |
+
Preprocess a given (batch) of text/images for a Prismatic VLM; forwards text to the underlying LLM's tokenizer,
|
| 201 |
+
forwards images to PrismaticImageProcessor.
|
| 202 |
+
|
| 203 |
+
@param text: The (batch) of text to encode; must be a string or list of strings.
|
| 204 |
+
@param images: A (batch of) PIL.Image.Image instance(s) to preprocess.
|
| 205 |
+
@param padding: Sequence padding strategy (if multiple specified) in < True = "longest" | "max_length" | False >
|
| 206 |
+
@param truncation: Truncation strategy for the output sequences; requires `max_length` to be specified
|
| 207 |
+
@param max_length: Maximum length (in tokens) to truncate
|
| 208 |
+
@param return_tensors: Type of return tensors (usually "pt" or TensorType.PYTORCH)
|
| 209 |
+
|
| 210 |
+
@return: BatchFeature with keys for `input_ids`, `attention_mask` and `pixel_values`.
|
| 211 |
+
"""
|
| 212 |
+
pixel_values = self.image_processor(images, return_tensors=return_tensors)["pixel_values"]
|
| 213 |
+
text_inputs = self.tokenizer(
|
| 214 |
+
text, return_tensors=return_tensors, padding=padding, truncation=truncation, max_length=max_length
|
| 215 |
+
)
|
| 216 |
+
|
| 217 |
+
# [Validate] Need same number of images and text inputs!
|
| 218 |
+
if pixel_values.shape[0] != text_inputs.input_ids.shape[0]:
|
| 219 |
+
raise ValueError("Batch is malformed; expected same number of images and text inputs!")
|
| 220 |
+
|
| 221 |
+
return BatchFeature(data={**text_inputs, "pixel_values": pixel_values})
|
| 222 |
+
|
| 223 |
+
# === Tokenizer Dispatch Utilities =>> check `PreTrainedTokenizerBase` for documentation ===
|
| 224 |
+
def batch_decode(
|
| 225 |
+
self,
|
| 226 |
+
sequences: Union[List[int], List[List[int]], torch.Tensor, Any], # `Any` = np.ndarray | tf.Tensor
|
| 227 |
+
skip_special_tokens: bool = False,
|
| 228 |
+
clean_up_tokenization_spaces: Optional[bool] = None,
|
| 229 |
+
**kwargs: str,
|
| 230 |
+
) -> List[str]:
|
| 231 |
+
return self.tokenizer.batch_decode(
|
| 232 |
+
sequences=sequences,
|
| 233 |
+
skip_special_tokens=skip_special_tokens,
|
| 234 |
+
clean_up_tokenization_spaces=clean_up_tokenization_spaces,
|
| 235 |
+
**kwargs,
|
| 236 |
+
)
|
| 237 |
+
|
| 238 |
+
def decode(
|
| 239 |
+
self,
|
| 240 |
+
token_ids: Union[int, List[int], torch.Tensor, Any], # `Any` = np.ndarray | tf.Tensor
|
| 241 |
+
skip_special_tokens: bool = False,
|
| 242 |
+
clean_up_tokenization_spaces: Optional[bool] = None,
|
| 243 |
+
**kwargs: str,
|
| 244 |
+
) -> str:
|
| 245 |
+
return self.tokenizer.decode(
|
| 246 |
+
token_ids=token_ids,
|
| 247 |
+
skip_special_tokens=skip_special_tokens,
|
| 248 |
+
clean_up_tokenization_spaces=clean_up_tokenization_spaces,
|
| 249 |
+
**kwargs,
|
| 250 |
+
)
|
| 251 |
+
|
| 252 |
+
@property
|
| 253 |
+
def model_input_names(self) -> List[str]:
|
| 254 |
+
tokenizer_input_names = self.tokenizer.model_input_names
|
| 255 |
+
image_processor_input_names = self.image_processor.model_input_names
|
| 256 |
+
|
| 257 |
+
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names))
|
processor_config.json
ADDED
|
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"auto_map": {
|
| 3 |
+
"AutoProcessor": "processing_prismatic.PrismaticProcessor"
|
| 4 |
+
},
|
| 5 |
+
"processor_class": "PrismaticProcessor"
|
| 6 |
+
}
|
proprio_projector--57500_checkpoint.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:2dde331d2e953e49eec6f7bd03aa059f42b206a574edc750e5d97611868907ae
|
| 3 |
+
size 1626096
|
special_tokens_map.json
ADDED
|
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"additional_special_tokens": [
|
| 3 |
+
"<|im_start|>",
|
| 4 |
+
"<|im_end|>",
|
| 5 |
+
"<|object_ref_start|>",
|
| 6 |
+
"<|object_ref_end|>",
|
| 7 |
+
"<|box_start|>",
|
| 8 |
+
"<|box_end|>",
|
| 9 |
+
"<|quad_start|>",
|
| 10 |
+
"<|quad_end|>",
|
| 11 |
+
"<|vision_start|>",
|
| 12 |
+
"<|vision_end|>",
|
| 13 |
+
"<|vision_pad|>",
|
| 14 |
+
"<|image_pad|>",
|
| 15 |
+
"<|video_pad|>"
|
| 16 |
+
],
|
| 17 |
+
"eos_token": {
|
| 18 |
+
"content": "<|endoftext|>",
|
| 19 |
+
"lstrip": false,
|
| 20 |
+
"normalized": false,
|
| 21 |
+
"rstrip": false,
|
| 22 |
+
"single_word": false
|
| 23 |
+
},
|
| 24 |
+
"pad_token": {
|
| 25 |
+
"content": "<|endoftext|>",
|
| 26 |
+
"lstrip": false,
|
| 27 |
+
"normalized": false,
|
| 28 |
+
"rstrip": false,
|
| 29 |
+
"single_word": false
|
| 30 |
+
}
|
| 31 |
+
}
|
tokenizer.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
tokenizer_config.json
ADDED
|
@@ -0,0 +1,211 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"add_bos_token": false,
|
| 3 |
+
"add_prefix_space": false,
|
| 4 |
+
"added_tokens_decoder": {
|
| 5 |
+
"151643": {
|
| 6 |
+
"content": "<|endoftext|>",
|
| 7 |
+
"lstrip": false,
|
| 8 |
+
"normalized": false,
|
| 9 |
+
"rstrip": false,
|
| 10 |
+
"single_word": false,
|
| 11 |
+
"special": true
|
| 12 |
+
},
|
| 13 |
+
"151644": {
|
| 14 |
+
"content": "<|im_start|>",
|
| 15 |
+
"lstrip": false,
|
| 16 |
+
"normalized": false,
|
| 17 |
+
"rstrip": false,
|
| 18 |
+
"single_word": false,
|
| 19 |
+
"special": true
|
| 20 |
+
},
|
| 21 |
+
"151645": {
|
| 22 |
+
"content": "<|im_end|>",
|
| 23 |
+
"lstrip": false,
|
| 24 |
+
"normalized": false,
|
| 25 |
+
"rstrip": false,
|
| 26 |
+
"single_word": false,
|
| 27 |
+
"special": true
|
| 28 |
+
},
|
| 29 |
+
"151646": {
|
| 30 |
+
"content": "<|object_ref_start|>",
|
| 31 |
+
"lstrip": false,
|
| 32 |
+
"normalized": false,
|
| 33 |
+
"rstrip": false,
|
| 34 |
+
"single_word": false,
|
| 35 |
+
"special": true
|
| 36 |
+
},
|
| 37 |
+
"151647": {
|
| 38 |
+
"content": "<|object_ref_end|>",
|
| 39 |
+
"lstrip": false,
|
| 40 |
+
"normalized": false,
|
| 41 |
+
"rstrip": false,
|
| 42 |
+
"single_word": false,
|
| 43 |
+
"special": true
|
| 44 |
+
},
|
| 45 |
+
"151648": {
|
| 46 |
+
"content": "<|box_start|>",
|
| 47 |
+
"lstrip": false,
|
| 48 |
+
"normalized": false,
|
| 49 |
+
"rstrip": false,
|
| 50 |
+
"single_word": false,
|
| 51 |
+
"special": true
|
| 52 |
+
},
|
| 53 |
+
"151649": {
|
| 54 |
+
"content": "<|box_end|>",
|
| 55 |
+
"lstrip": false,
|
| 56 |
+
"normalized": false,
|
| 57 |
+
"rstrip": false,
|
| 58 |
+
"single_word": false,
|
| 59 |
+
"special": true
|
| 60 |
+
},
|
| 61 |
+
"151650": {
|
| 62 |
+
"content": "<|quad_start|>",
|
| 63 |
+
"lstrip": false,
|
| 64 |
+
"normalized": false,
|
| 65 |
+
"rstrip": false,
|
| 66 |
+
"single_word": false,
|
| 67 |
+
"special": true
|
| 68 |
+
},
|
| 69 |
+
"151651": {
|
| 70 |
+
"content": "<|quad_end|>",
|
| 71 |
+
"lstrip": false,
|
| 72 |
+
"normalized": false,
|
| 73 |
+
"rstrip": false,
|
| 74 |
+
"single_word": false,
|
| 75 |
+
"special": true
|
| 76 |
+
},
|
| 77 |
+
"151652": {
|
| 78 |
+
"content": "<|vision_start|>",
|
| 79 |
+
"lstrip": false,
|
| 80 |
+
"normalized": false,
|
| 81 |
+
"rstrip": false,
|
| 82 |
+
"single_word": false,
|
| 83 |
+
"special": true
|
| 84 |
+
},
|
| 85 |
+
"151653": {
|
| 86 |
+
"content": "<|vision_end|>",
|
| 87 |
+
"lstrip": false,
|
| 88 |
+
"normalized": false,
|
| 89 |
+
"rstrip": false,
|
| 90 |
+
"single_word": false,
|
| 91 |
+
"special": true
|
| 92 |
+
},
|
| 93 |
+
"151654": {
|
| 94 |
+
"content": "<|vision_pad|>",
|
| 95 |
+
"lstrip": false,
|
| 96 |
+
"normalized": false,
|
| 97 |
+
"rstrip": false,
|
| 98 |
+
"single_word": false,
|
| 99 |
+
"special": true
|
| 100 |
+
},
|
| 101 |
+
"151655": {
|
| 102 |
+
"content": "<|image_pad|>",
|
| 103 |
+
"lstrip": false,
|
| 104 |
+
"normalized": false,
|
| 105 |
+
"rstrip": false,
|
| 106 |
+
"single_word": false,
|
| 107 |
+
"special": true
|
| 108 |
+
},
|
| 109 |
+
"151656": {
|
| 110 |
+
"content": "<|video_pad|>",
|
| 111 |
+
"lstrip": false,
|
| 112 |
+
"normalized": false,
|
| 113 |
+
"rstrip": false,
|
| 114 |
+
"single_word": false,
|
| 115 |
+
"special": true
|
| 116 |
+
},
|
| 117 |
+
"151657": {
|
| 118 |
+
"content": "<tool_call>",
|
| 119 |
+
"lstrip": false,
|
| 120 |
+
"normalized": false,
|
| 121 |
+
"rstrip": false,
|
| 122 |
+
"single_word": false,
|
| 123 |
+
"special": false
|
| 124 |
+
},
|
| 125 |
+
"151658": {
|
| 126 |
+
"content": "</tool_call>",
|
| 127 |
+
"lstrip": false,
|
| 128 |
+
"normalized": false,
|
| 129 |
+
"rstrip": false,
|
| 130 |
+
"single_word": false,
|
| 131 |
+
"special": false
|
| 132 |
+
},
|
| 133 |
+
"151659": {
|
| 134 |
+
"content": "<|fim_prefix|>",
|
| 135 |
+
"lstrip": false,
|
| 136 |
+
"normalized": false,
|
| 137 |
+
"rstrip": false,
|
| 138 |
+
"single_word": false,
|
| 139 |
+
"special": false
|
| 140 |
+
},
|
| 141 |
+
"151660": {
|
| 142 |
+
"content": "<|fim_middle|>",
|
| 143 |
+
"lstrip": false,
|
| 144 |
+
"normalized": false,
|
| 145 |
+
"rstrip": false,
|
| 146 |
+
"single_word": false,
|
| 147 |
+
"special": false
|
| 148 |
+
},
|
| 149 |
+
"151661": {
|
| 150 |
+
"content": "<|fim_suffix|>",
|
| 151 |
+
"lstrip": false,
|
| 152 |
+
"normalized": false,
|
| 153 |
+
"rstrip": false,
|
| 154 |
+
"single_word": false,
|
| 155 |
+
"special": false
|
| 156 |
+
},
|
| 157 |
+
"151662": {
|
| 158 |
+
"content": "<|fim_pad|>",
|
| 159 |
+
"lstrip": false,
|
| 160 |
+
"normalized": false,
|
| 161 |
+
"rstrip": false,
|
| 162 |
+
"single_word": false,
|
| 163 |
+
"special": false
|
| 164 |
+
},
|
| 165 |
+
"151663": {
|
| 166 |
+
"content": "<|repo_name|>",
|
| 167 |
+
"lstrip": false,
|
| 168 |
+
"normalized": false,
|
| 169 |
+
"rstrip": false,
|
| 170 |
+
"single_word": false,
|
| 171 |
+
"special": false
|
| 172 |
+
},
|
| 173 |
+
"151664": {
|
| 174 |
+
"content": "<|file_sep|>",
|
| 175 |
+
"lstrip": false,
|
| 176 |
+
"normalized": false,
|
| 177 |
+
"rstrip": false,
|
| 178 |
+
"single_word": false,
|
| 179 |
+
"special": false
|
| 180 |
+
}
|
| 181 |
+
},
|
| 182 |
+
"additional_special_tokens": [
|
| 183 |
+
"<|im_start|>",
|
| 184 |
+
"<|im_end|>",
|
| 185 |
+
"<|object_ref_start|>",
|
| 186 |
+
"<|object_ref_end|>",
|
| 187 |
+
"<|box_start|>",
|
| 188 |
+
"<|box_end|>",
|
| 189 |
+
"<|quad_start|>",
|
| 190 |
+
"<|quad_end|>",
|
| 191 |
+
"<|vision_start|>",
|
| 192 |
+
"<|vision_end|>",
|
| 193 |
+
"<|vision_pad|>",
|
| 194 |
+
"<|image_pad|>",
|
| 195 |
+
"<|video_pad|>"
|
| 196 |
+
],
|
| 197 |
+
"auto_map": {
|
| 198 |
+
"AutoProcessor": "processing_prismatic.PrismaticProcessor"
|
| 199 |
+
},
|
| 200 |
+
"bos_token": null,
|
| 201 |
+
"chat_template": "{%- if tools %}\n {{- '<|im_start|>system\\n' }}\n {%- if messages[0]['role'] == 'system' %}\n {{- messages[0]['content'] }}\n {%- else %}\n {{- 'You are a helpful assistant.' }}\n {%- endif %}\n {{- \"\\n\\n# Tools\\n\\nYou may call one or more functions to assist with the user query.\\n\\nYou are provided with function signatures within <tools></tools> XML tags:\\n<tools>\" }}\n {%- for tool in tools %}\n {{- \"\\n\" }}\n {{- tool | tojson }}\n {%- endfor %}\n {{- \"\\n</tools>\\n\\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\\n<tool_call>\\n{\\\"name\\\": <function-name>, \\\"arguments\\\": <args-json-object>}\\n</tool_call><|im_end|>\\n\" }}\n{%- else %}\n {%- if messages[0]['role'] == 'system' %}\n {{- '<|im_start|>system\\n' + messages[0]['content'] + '<|im_end|>\\n' }}\n {%- else %}\n {{- '<|im_start|>system\\nYou are a helpful assistant.<|im_end|>\\n' }}\n {%- endif %}\n{%- endif %}\n{%- for message in messages %}\n {%- if (message.role == \"user\") or (message.role == \"system\" and not loop.first) or (message.role == \"assistant\" and not message.tool_calls) %}\n {{- '<|im_start|>' + message.role + '\\n' + message.content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" %}\n {{- '<|im_start|>' + message.role }}\n {%- if message.content %}\n {{- '\\n' + message.content }}\n {%- endif %}\n {%- for tool_call in message.tool_calls %}\n {%- if tool_call.function is defined %}\n {%- set tool_call = tool_call.function %}\n {%- endif %}\n {{- '\\n<tool_call>\\n{\"name\": \"' }}\n {{- tool_call.name }}\n {{- '\", \"arguments\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- '}\\n</tool_call>' }}\n {%- endfor %}\n {{- '<|im_end|>\\n' }}\n {%- elif message.role == \"tool\" %}\n {%- if (loop.index0 == 0) or (messages[loop.index0 - 1].role != \"tool\") %}\n {{- '<|im_start|>user' }}\n {%- endif %}\n {{- '\\n<tool_response>\\n' }}\n {{- message.content }}\n {{- '\\n</tool_response>' }}\n {%- if loop.last or (messages[loop.index0 + 1].role != \"tool\") %}\n {{- '<|im_end|>\\n' }}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|im_start|>assistant\\n' }}\n{%- endif %}\n",
|
| 202 |
+
"clean_up_tokenization_spaces": false,
|
| 203 |
+
"eos_token": "<|endoftext|>",
|
| 204 |
+
"errors": "replace",
|
| 205 |
+
"model_max_length": 131072,
|
| 206 |
+
"pad_token": "<|endoftext|>",
|
| 207 |
+
"processor_class": "PrismaticProcessor",
|
| 208 |
+
"split_special_tokens": false,
|
| 209 |
+
"tokenizer_class": "Qwen2Tokenizer",
|
| 210 |
+
"unk_token": null
|
| 211 |
+
}
|
vocab.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|