Delete handler.py
Browse files- handler.py +0 -102
handler.py
DELETED
@@ -1,102 +0,0 @@
|
|
1 |
-
from typing import Dict, List, Any
|
2 |
-
import torch
|
3 |
-
from unsloth import FastLanguageModel
|
4 |
-
import os
|
5 |
-
|
6 |
-
class EndpointHandler:
|
7 |
-
def __init__(self, path=""):
|
8 |
-
# Model configuration
|
9 |
-
self.max_seq_length = 8192
|
10 |
-
self.load_in_4bit = True
|
11 |
-
self.dtype = None # Auto detection
|
12 |
-
|
13 |
-
# Print the CUDA version
|
14 |
-
print(f"CUDA version: {torch.version.cuda}")
|
15 |
-
|
16 |
-
# Load model and tokenizer
|
17 |
-
self.model_id = "VaidikML0508/Access-Me-Instruct-V2"
|
18 |
-
self.model, self.tokenizer = FastLanguageModel.from_pretrained(
|
19 |
-
model_name=self.model_id,
|
20 |
-
max_seq_length=self.max_seq_length,
|
21 |
-
dtype=self.dtype,
|
22 |
-
load_in_4bit=self.load_in_4bit,
|
23 |
-
token=os.environ['HF_KEY'] # Replace with actual token if needed
|
24 |
-
)
|
25 |
-
|
26 |
-
# Prepare model for inference
|
27 |
-
FastLanguageModel.for_inference(self.model)
|
28 |
-
|
29 |
-
# Define prompt template
|
30 |
-
self.prompt_template = """<|begin_of_text|><|start_header_id|>system<|end_header_id|>
|
31 |
-
{}<|eot_id|><|start_header_id|>user<|end_header_id|>
|
32 |
-
{}<|eot_id|><|start_header_id|>assistant<|end_header_id|>
|
33 |
-
{}<|eot_id|>"""
|
34 |
-
|
35 |
-
def __call__(self, data: Dict[str, Any]) -> Dict[str, str]:
|
36 |
-
"""
|
37 |
-
Handle inference request
|
38 |
-
:param data: Dictionary containing 'system_instruction', 'question', and optional parameters
|
39 |
-
:return: Dictionary containing generated response
|
40 |
-
"""
|
41 |
-
# Extract inputs
|
42 |
-
system_instruction = data.pop("system_instruction", "You are a helpful AI assistant.")
|
43 |
-
question = data.pop("question", None)
|
44 |
-
|
45 |
-
# Check if question is provided
|
46 |
-
if question is None:
|
47 |
-
return {"error": "Please provide a question."}
|
48 |
-
|
49 |
-
# Extract generation parameters
|
50 |
-
max_new_tokens = data.pop("max_new_tokens", 200)
|
51 |
-
use_cache = data.pop("use_cache", True)
|
52 |
-
|
53 |
-
try:
|
54 |
-
# Prepare input prompt
|
55 |
-
formatted_prompt = self.prompt_template.format(
|
56 |
-
system_instruction,
|
57 |
-
question,
|
58 |
-
"" # Empty output for generation
|
59 |
-
)
|
60 |
-
|
61 |
-
# Tokenize input
|
62 |
-
inputs = self.tokenizer(
|
63 |
-
[formatted_prompt],
|
64 |
-
return_tensors="pt"
|
65 |
-
).to("cuda")
|
66 |
-
|
67 |
-
# Generate response
|
68 |
-
outputs = self.model.generate(
|
69 |
-
**inputs,
|
70 |
-
max_new_tokens=max_new_tokens,
|
71 |
-
use_cache=use_cache
|
72 |
-
)
|
73 |
-
|
74 |
-
# Decode output
|
75 |
-
generated_text = self.tokenizer.batch_decode(outputs)[0]
|
76 |
-
# print(generated_text)
|
77 |
-
# Extract the assistant's response
|
78 |
-
# Find the last assistant section in the generated text
|
79 |
-
assistant_parts = generated_text.split("<|start_header_id|>assistant<|end_header_id|>")
|
80 |
-
if len(assistant_parts) > 1:
|
81 |
-
response = assistant_parts[-1].replace('<|eot_id|>', "").strip(" \n")
|
82 |
-
else:
|
83 |
-
response = generated_text
|
84 |
-
|
85 |
-
return {
|
86 |
-
"generated_text": response,
|
87 |
-
"full_prompt": formatted_prompt
|
88 |
-
}
|
89 |
-
|
90 |
-
except Exception as e:
|
91 |
-
return {
|
92 |
-
"error": f"Generation failed: {str(e)}",
|
93 |
-
"full_prompt": formatted_prompt if 'formatted_prompt' in locals() else None
|
94 |
-
}
|
95 |
-
|
96 |
-
@staticmethod
|
97 |
-
def check_cuda():
|
98 |
-
"""
|
99 |
-
Verify CUDA availability
|
100 |
-
"""
|
101 |
-
if not torch.cuda.is_available():
|
102 |
-
raise ValueError("CUDA is required for this model")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|