Text Generation
Transformers
Safetensors
English
qwen3
esper
esper-3
valiant
valiant-labs
qwen
qwen-3
qwen-3-8b
8b
deepseek
deepseek-r1-0528
deepseek-r1
reasoning
code
code-instruct
python
javascript
dev-ops
jenkins
terraform
scripting
powershell
azure
aws
gcp
cloud
problem-solving
architect
engineer
developer
creative
analytical
expert
rationality
conversational
chat
instruct
text-generation-inference
File size: 3,884 Bytes
477a2e3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 |
---
language:
- en
library_name: transformers
pipeline_tag: text-generation
tags:
- esper
- esper-3
- valiant
- valiant-labs
- qwen
- qwen-3
- qwen-3-8b
- 8b
- deepseek
- deepseek-r1-0528
- deepseek-r1
- reasoning
- code
- code-instruct
- python
- javascript
- dev-ops
- jenkins
- terraform
- scripting
- powershell
- azure
- aws
- gcp
- cloud
- problem-solving
- architect
- engineer
- developer
- creative
- analytical
- expert
- rationality
- conversational
- chat
- instruct
base_model: deepseek-ai/DeepSeek-R1-0528-Qwen3-8B
datasets:
- sequelbox/Titanium2.1-DeepSeek-R1
- sequelbox/Tachibana2-DeepSeek-R1
- sequelbox/Raiden-DeepSeek-R1
license: apache-2.0
---
**[Support our open-source dataset and model releases!](https://huggingface.co/spaces/sequelbox/SupportOpenSource)**

Esper 3: [DeepSeek-R1-0528-Qwen3-8B](https://huggingface.co/ValiantLabs/DeepSeek-R1-0528-Qwen3-8B-Esper3), [Qwen3-4B](https://huggingface.co/ValiantLabs/Qwen3-4B-Esper3), [Qwen3-8B](https://huggingface.co/ValiantLabs/Qwen3-8B-Esper3), [Qwen3-14B](https://huggingface.co/ValiantLabs/Qwen3-14B-Esper3)
Esper 3 is a coding, architecture, and DevOps reasoning specialist built on Qwen 3.
- Finetuned on our [DevOps and architecture reasoning](https://huggingface.co/datasets/sequelbox/Titanium2.1-DeepSeek-R1) and [code reasoning](https://huggingface.co/datasets/sequelbox/Tachibana2-DeepSeek-R1) data generated with Deepseek R1!
- Improved [general and creative reasoning](https://huggingface.co/datasets/sequelbox/Raiden-DeepSeek-R1) to supplement problem-solving and general chat performance.
- Small model sizes allow running on local desktop and mobile, plus super-fast server inference!
## Prompting Guide
Esper 3 uses the [DeepSeek-R1-0528-Qwen3-8B](https://huggingface.co/deepseek-ai/DeepSeek-R1-0528-Qwen3-8B) prompt format.
Esper 3 is a reasoning finetune; **we recommend enable_thinking=True for all chats.**
Example inference script to get started:
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "ValiantLabs/DeepSeek-R1-0528-Qwen3-8B-Esper3"
# load the tokenizer and the model
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype="auto",
device_map="auto"
)
# prepare the model input
prompt = "Write a Terraform configuration that uses the `aws_ami` data source to find the latest Amazon Linux 2 AMI. Then, provision an EC2 instance using this dynamically determined AMI ID."
messages = [
{"role": "user", "content": prompt}
]
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True,
enable_thinking=True # Switches between thinking and non-thinking modes. Default is True.
)
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
# conduct text completion
generated_ids = model.generate(
**model_inputs,
max_new_tokens=32768
)
output_ids = generated_ids[0][len(model_inputs.input_ids[0]):].tolist()
# parsing thinking content
try:
# rindex finding 151668 (</think>)
index = len(output_ids) - output_ids[::-1].index(151668)
except ValueError:
index = 0
thinking_content = tokenizer.decode(output_ids[:index], skip_special_tokens=True).strip("\n")
content = tokenizer.decode(output_ids[index:], skip_special_tokens=True).strip("\n")
print("thinking content:", thinking_content)
print("content:", content)
```

Esper 3 is created by [Valiant Labs.](http://valiantlabs.ca/)
[Check out our HuggingFace page to see all of our models!](https://huggingface.co/ValiantLabs)
We care about open source. For everyone to use.
|