File size: 3,579 Bytes
5d472bd 9e26714 5d472bd 9e26714 5d472bd 9e26714 5d472bd 9e26714 5d472bd 9e26714 5d472bd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 |
import sys
sys.path.append('Depth-Anything-V2')
import cv2
import torch
import matplotlib.pyplot as plt
import numpy as np
from PIL import Image
from depth_anything_v2.dpt import DepthAnythingV2
from pathlib import Path
from tqdm.auto import tqdm
import argparse
def parse_args():
parser = argparse.ArgumentParser(description='Generate depth and normal maps from images')
parser.add_argument('--source_root', type=str, default='test_dir',
help='Root directory containing the images')
parser.add_argument('--model_path', type=str,
default='depth_anything_v2_vitl.pth',
help='Path to the depth model checkpoint')
return parser.parse_args()
def generate_depth_maps(source_root, model_path):
source_root = Path(source_root)
origin = source_root / 'origin'
to_depth_list = [origin]
model = DepthAnythingV2(encoder='vitl', features=256, out_channels=[256, 512, 1024, 1024]).cuda()
model.load_state_dict(torch.load(model_path, map_location='cpu'))
model.eval()
depth_path = source_root / 'depth'
depth_path.mkdir(parents=True, exist_ok=True)
with torch.inference_mode():
for to_depth_item in to_depth_list:
folder_name = to_depth_item.stem
dst_path = depth_path
dst_path.mkdir(parents=True, exist_ok=True)
bar = tqdm(to_depth_item.glob('*'))
for image_path in bar:
try:
raw_img = cv2.imread(str(image_path))
depth = model.infer_image(raw_img) # HxW raw depth map
depth = (depth - depth.min()) / (depth.max() - depth.min()) * 255.0
depth = depth.astype(np.uint8)
np.save(f'{dst_path}/{image_path.stem}.npy', depth)
except Exception as e:
print(e)
continue
return depth_path
def calculate_normal_map(img_path: Path, ksize=5):
# 讀取深度圖
depth = np.load(img_path).astype(np.float32)
# 計算 X、Y 方向的梯度
dx = cv2.Sobel(depth, cv2.CV_32F, 1, 0, ksize=ksize)
dy = cv2.Sobel(depth, cv2.CV_32F, 0, 1, ksize=ksize)
# 假設 Z 軸方向為 -1
dz = np.ones_like(dx) * -1
# 組合成法向量 (Nx, Ny, Nz)
normals = np.stack((dx, dy, dz), axis=-1)
# 進行歸一化
norm = np.linalg.norm(normals, axis=-1, keepdims=True)
normals /= (norm + 1e-6) # 避免除零錯誤
# 轉換為 0-255 的 RGB 影像 (HWC)
normal_map = (normals + 1) / 2 * 255
normal_map = normal_map.astype("uint8")
normal_map = normal_map.transpose(2, 0, 1) # (H, W, C) -> (C, H, W)
return normal_map
def generate_normal_maps(source_root, ksize=5):
source_root = Path(source_root)
depth_root = source_root / 'depth'
normal_root = source_root / 'normal'
normal_root.mkdir(parents=True, exist_ok=True)
bar = tqdm(list(depth_root.glob('*.npy')))
for depth_img_path in bar:
img_name = depth_img_path.name
normal_map = calculate_normal_map(depth_img_path, ksize=ksize)
np.save(f'{normal_root}/{img_name}', normal_map)
def main():
args = parse_args()
print(f"Generating depth maps from images in {args.source_root}")
depth_path = generate_depth_maps(args.source_root, args.model_path)
print(f"Generating normal maps from depth maps")
generate_normal_maps(args.source_root)
print("Processing complete!")
if __name__ == "__main__":
main() |