# TPAMI 2024:Frequency-aware Feature Fusion for Dense Image Prediction import torch import torch.nn as nn import torch.nn.functional as F from torch.utils.checkpoint import checkpoint import warnings import numpy as np def xavier_init(module: nn.Module, gain: float = 1, bias: float = 0, distribution: str = 'normal') -> None: assert distribution in ['uniform', 'normal'] if hasattr(module, 'weight') and module.weight is not None: if distribution == 'uniform': nn.init.xavier_uniform_(module.weight, gain=gain) else: nn.init.xavier_normal_(module.weight, gain=gain) if hasattr(module, 'bias') and module.bias is not None: nn.init.constant_(module.bias, bias) def carafe(x, normed_mask, kernel_size, group=1, up=1): b, c, h, w = x.shape _, m_c, m_h, m_w = normed_mask.shape assert m_h == up * h assert m_w == up * w pad = kernel_size // 2 pad_x = F.pad(x, pad=[pad] * 4, mode='reflect') unfold_x = F.unfold(pad_x, kernel_size=(kernel_size, kernel_size), stride=1, padding=0) unfold_x = unfold_x.reshape(b, c * kernel_size * kernel_size, h, w) unfold_x = F.interpolate(unfold_x, scale_factor=up, mode='nearest') unfold_x = unfold_x.reshape(b, c, kernel_size * kernel_size, m_h, m_w) normed_mask = normed_mask.reshape(b, 1, kernel_size * kernel_size, m_h, m_w) res = unfold_x * normed_mask res = res.sum(dim=2).reshape(b, c, m_h, m_w) return res def normal_init(module, mean=0, std=1, bias=0): if hasattr(module, 'weight') and module.weight is not None: nn.init.normal_(module.weight, mean, std) if hasattr(module, 'bias') and module.bias is not None: nn.init.constant_(module.bias, bias) def constant_init(module, val, bias=0): if hasattr(module, 'weight') and module.weight is not None: nn.init.constant_(module.weight, val) if hasattr(module, 'bias') and module.bias is not None: nn.init.constant_(module.bias, bias) def resize(input, size=None, scale_factor=None, mode='nearest', align_corners=None, warning=True): if warning: if size is not None and align_corners: input_h, input_w = tuple(int(x) for x in input.shape[2:]) output_h, output_w = tuple(int(x) for x in size) if output_h > input_h or output_w > input_w: if ((output_h > 1 and output_w > 1 and input_h > 1 and input_w > 1) and (output_h - 1) % (input_h - 1) and (output_w - 1) % (input_w - 1)): warnings.warn( f'When align_corners={align_corners}, ' 'the output would more aligned if ' f'input size {(input_h, input_w)} is `x+1` and ' f'out size {(output_h, output_w)} is `nx+1`') return F.interpolate(input, size, scale_factor, mode, align_corners) def hamming2D(M, N): hamming_x = np.hamming(M) hamming_y = np.hamming(N) hamming_2d = np.outer(hamming_x, hamming_y) return hamming_2d class DesneFusion(nn.Module): def __init__(self, hr_channels, lr_channels, scale_factor=1, lowpass_kernel=5, highpass_kernel=3, up_group=1, encoder_kernel=3, encoder_dilation=1, compressed_channels=64, align_corners=False, upsample_mode='nearest', feature_resample=False, feature_resample_group=4, comp_feat_upsample=True, use_high_pass=True, use_low_pass=True, hr_residual=True, semi_conv=True, hamming_window=True, feature_resample_norm=True, **kwargs): super().__init__() self.scale_factor = scale_factor self.lowpass_kernel = lowpass_kernel self.highpass_kernel = highpass_kernel self.up_group = up_group self.encoder_kernel = encoder_kernel self.encoder_dilation = encoder_dilation self.compressed_channels = compressed_channels self.hr_channel_compressor = nn.Conv2d(hr_channels, self.compressed_channels,1) self.lr_channel_compressor = nn.Conv2d(lr_channels, self.compressed_channels,1) self.content_encoder = nn.Conv2d( self.compressed_channels, lowpass_kernel ** 2 * self.up_group * self.scale_factor * self.scale_factor, self.encoder_kernel, padding=int((self.encoder_kernel - 1) * self.encoder_dilation / 2), dilation=self.encoder_dilation, groups=1) self.align_corners = align_corners self.upsample_mode = upsample_mode self.hr_residual = hr_residual self.use_high_pass = use_high_pass self.use_low_pass = use_low_pass self.semi_conv = semi_conv self.feature_resample = feature_resample self.comp_feat_upsample = comp_feat_upsample if self.feature_resample: self.dysampler = LocalSimGuidedSampler(in_channels=compressed_channels, scale=2, style='lp', groups=feature_resample_group, use_direct_scale=True, kernel_size=encoder_kernel, norm=feature_resample_norm) if self.use_high_pass: self.content_encoder2 = nn.Conv2d( # AHPF generator self.compressed_channels, highpass_kernel ** 2 * self.up_group * self.scale_factor * self.scale_factor, self.encoder_kernel, padding=int((self.encoder_kernel - 1) * self.encoder_dilation / 2), dilation=self.encoder_dilation, groups=1) self.hamming_window = hamming_window lowpass_pad=0 highpass_pad=0 if self.hamming_window: self.register_buffer('hamming_lowpass', torch.FloatTensor(hamming2D(lowpass_kernel + 2 * lowpass_pad, lowpass_kernel + 2 * lowpass_pad))[None, None,]) self.register_buffer('hamming_highpass', torch.FloatTensor(hamming2D(highpass_kernel + 2 * highpass_pad, highpass_kernel + 2 * highpass_pad))[None, None,]) else: self.register_buffer('hamming_lowpass', torch.FloatTensor([1.0])) self.register_buffer('hamming_highpass', torch.FloatTensor([1.0])) self.init_weights() self.intermediate_results = {} def init_weights(self): for m in self.modules(): # print(m) if isinstance(m, nn.Conv2d): xavier_init(m, distribution='uniform') normal_init(self.content_encoder, std=0.001) if self.use_high_pass: normal_init(self.content_encoder2, std=0.001) def kernel_normalizer(self, mask, kernel, scale_factor=None, hamming=1): if scale_factor is not None: mask = F.pixel_shuffle(mask, self.scale_factor) n, mask_c, h, w = mask.size() mask_channel = int(mask_c / float(kernel**2)) # group # mask = mask.view(n, mask_channel, -1, h, w) # mask = F.softmax(mask, dim=2, dtype=mask.dtype) # mask = mask.view(n, mask_c, h, w).contiguous() mask = mask.view(n, mask_channel, -1, h, w) mask = F.softmax(mask, dim=2, dtype=mask.dtype) mask = mask.view(n, mask_channel, kernel, kernel, h, w) mask = mask.permute(0, 1, 4, 5, 2, 3).view(n, -1, kernel, kernel) # mask = F.pad(mask, pad=[padding] * 4, mode=self.padding_mode) # kernel + 2 * padding mask = mask * hamming mask /= mask.sum(dim=(-1, -2), keepdims=True) # print(hamming) # print(mask.shape) mask = mask.view(n, mask_channel, h, w, -1) mask = mask.permute(0, 1, 4, 2, 3).view(n, -1, h, w).contiguous() return mask def forward(self, hr_feat, lr_feat, use_checkpoint=False): # use check_point to save GPU memory if use_checkpoint: return checkpoint(self._forward, hr_feat, lr_feat) else: return self._forward(hr_feat, lr_feat) def _forward(self, hr_feat, lr_feat): # <<< 唯一修改的部分:在不影響運算的前提下,儲存特徵 >>> # 每次 forward 開始時清空,避免儲存舊的結果 self.intermediate_results.clear() # 1. 儲存原始輸入 self.intermediate_results['hr_feat_before'] = hr_feat.clone() self.intermediate_results['lr_feat_before'] = lr_feat.clone() compressed_hr_feat = self.hr_channel_compressor(hr_feat) compressed_lr_feat = self.lr_channel_compressor(lr_feat) if self.semi_conv: if self.comp_feat_upsample: if self.use_high_pass: mask_hr_hr_feat = self.content_encoder2(compressed_hr_feat) #从hr_feat得到初始高通滤波特征 mask_hr_init = self.kernel_normalizer(mask_hr_hr_feat, self.highpass_kernel, hamming=self.hamming_highpass) #kernel归一化得到初始高通滤波 compressed_hr_feat = compressed_hr_feat + compressed_hr_feat - carafe(compressed_hr_feat, mask_hr_init, self.highpass_kernel, self.up_group, 1) #利用初始高通滤波对压缩hr_feat的高频增强 (x-x的低通结果=x的高通结果) mask_lr_hr_feat = self.content_encoder(compressed_hr_feat) #从hr_feat得到初始低通滤波特征 mask_lr_init = self.kernel_normalizer(mask_lr_hr_feat, self.lowpass_kernel, hamming=self.hamming_lowpass) #kernel归一化得到初始低通滤波 mask_lr_lr_feat_lr = self.content_encoder(compressed_lr_feat) #从hr_feat得到另一部分初始低通滤波特征 mask_lr_lr_feat = F.interpolate( #利用初始低通滤波对另一部分初始低通滤波特征上采样 carafe(mask_lr_lr_feat_lr, mask_lr_init, self.lowpass_kernel, self.up_group, 2), size=compressed_hr_feat.shape[-2:], mode='nearest') mask_lr = mask_lr_hr_feat + mask_lr_lr_feat #将两部分初始低通滤波特征合在一起 mask_lr_init = self.kernel_normalizer(mask_lr, self.lowpass_kernel, hamming=self.hamming_lowpass) #得到初步融合的初始低通滤波 mask_hr_lr_feat = F.interpolate( #使用初始低通滤波对lr_feat处理,分辨率得到提高 carafe(self.content_encoder2(compressed_lr_feat), mask_lr_init, self.lowpass_kernel, self.up_group, 2), size=compressed_hr_feat.shape[-2:], mode='nearest') mask_hr = mask_hr_hr_feat + mask_hr_lr_feat # 最终高通滤波特征 else: raise NotImplementedError else: mask_lr = self.content_encoder(compressed_hr_feat) + F.interpolate(self.content_encoder(compressed_lr_feat), size=compressed_hr_feat.shape[-2:], mode='nearest') if self.use_high_pass: mask_hr = self.content_encoder2(compressed_hr_feat) + F.interpolate(self.content_encoder2(compressed_lr_feat), size=compressed_hr_feat.shape[-2:], mode='nearest') else: compressed_x = F.interpolate(compressed_lr_feat, size=compressed_hr_feat.shape[-2:], mode='nearest') + compressed_hr_feat mask_lr = self.content_encoder(compressed_x) if self.use_high_pass: mask_hr = self.content_encoder2(compressed_x) mask_lr = self.kernel_normalizer(mask_lr, self.lowpass_kernel, hamming=self.hamming_lowpass) # 2. 儲存低頻處理後的特徵 lr_feat_after = carafe(lr_feat, mask_lr, self.lowpass_kernel, self.up_group, 2) self.intermediate_results['lr_feat_after'] = lr_feat_after.clone() if self.semi_conv: lr_feat = carafe(lr_feat, mask_lr, self.lowpass_kernel, self.up_group, 2) else: lr_feat = resize( input=lr_feat, size=hr_feat.shape[2:], mode=self.upsample_mode, align_corners=None if self.upsample_mode == 'nearest' else self.align_corners) lr_feat = carafe(lr_feat, mask_lr, self.lowpass_kernel, self.up_group, 1) if self.use_high_pass: mask_hr = self.kernel_normalizer(mask_hr, self.highpass_kernel, hamming=self.hamming_highpass) hr_feat_hf = hr_feat - carafe(hr_feat, mask_hr, self.highpass_kernel, self.up_group, 1) self.intermediate_results['hr_feat_hf_component'] = hr_feat_hf.clone() if self.hr_residual: # print('using hr_residual') hr_feat = hr_feat_hf + hr_feat else: hr_feat = hr_feat_hf self.intermediate_results['hr_feat_after'] = hr_feat.clone() else: # 如果不處理,也存入對應的值以避免錯誤 final_hr_feat = hr_feat self.intermediate_results['hr_feat_hf_component'] = torch.zeros_like(final_hr_feat) self.intermediate_results['hr_feat_after'] = final_hr_feat.clone() if self.feature_resample: # print(lr_feat.shape) lr_feat = self.dysampler(hr_x=compressed_hr_feat, lr_x=compressed_lr_feat, feat2sample=lr_feat) self.intermediate_results['lr_feat_after'] = lr_feat.clone() # 如果有 dysampler,則更新 return mask_lr, hr_feat, lr_feat class LocalSimGuidedSampler(nn.Module): """ offset generator in DesneFusion """ def __init__(self, in_channels, scale=2, style='lp', groups=4, use_direct_scale=True, kernel_size=1, local_window=3, sim_type='cos', norm=True, direction_feat='sim_concat'): super().__init__() assert scale==2 assert style=='lp' self.scale = scale self.style = style self.groups = groups self.local_window = local_window self.sim_type = sim_type self.direction_feat = direction_feat if style == 'pl': assert in_channels >= scale ** 2 and in_channels % scale ** 2 == 0 assert in_channels >= groups and in_channels % groups == 0 if style == 'pl': in_channels = in_channels // scale ** 2 out_channels = 2 * groups else: out_channels = 2 * groups * scale ** 2 if self.direction_feat == 'sim': self.offset = nn.Conv2d(local_window**2 - 1, out_channels, kernel_size=kernel_size, padding=kernel_size//2) elif self.direction_feat == 'sim_concat': self.offset = nn.Conv2d(in_channels + local_window**2 - 1, out_channels, kernel_size=kernel_size, padding=kernel_size//2) else: raise NotImplementedError normal_init(self.offset, std=0.001) if use_direct_scale: if self.direction_feat == 'sim': self.direct_scale = nn.Conv2d(in_channels, out_channels, kernel_size=kernel_size, padding=kernel_size//2) elif self.direction_feat == 'sim_concat': self.direct_scale = nn.Conv2d(in_channels + local_window**2 - 1, out_channels, kernel_size=kernel_size, padding=kernel_size//2) else: raise NotImplementedError constant_init(self.direct_scale, val=0.) out_channels = 2 * groups if self.direction_feat == 'sim': self.hr_offset = nn.Conv2d(local_window**2 - 1, out_channels, kernel_size=kernel_size, padding=kernel_size//2) elif self.direction_feat == 'sim_concat': self.hr_offset = nn.Conv2d(in_channels + local_window**2 - 1, out_channels, kernel_size=kernel_size, padding=kernel_size//2) else: raise NotImplementedError normal_init(self.hr_offset, std=0.001) if use_direct_scale: if self.direction_feat == 'sim': self.hr_direct_scale = nn.Conv2d(in_channels, out_channels, kernel_size=kernel_size, padding=kernel_size//2) elif self.direction_feat == 'sim_concat': self.hr_direct_scale = nn.Conv2d(in_channels + local_window**2 - 1, out_channels, kernel_size=kernel_size, padding=kernel_size//2) else: raise NotImplementedError constant_init(self.hr_direct_scale, val=0.) self.norm = norm if self.norm: self.norm_hr = nn.GroupNorm(in_channels // 8, in_channels) self.norm_lr = nn.GroupNorm(in_channels // 8, in_channels) else: self.norm_hr = nn.Identity() self.norm_lr = nn.Identity() self.register_buffer('init_pos', self._init_pos()) def _init_pos(self): h = torch.arange((-self.scale + 1) / 2, (self.scale - 1) / 2 + 1) / self.scale return torch.stack(torch.meshgrid([h, h])).transpose(1, 2).repeat(1, self.groups, 1).reshape(1, -1, 1, 1) def sample(self, x, offset, scale=None): if scale is None: scale = self.scale B, _, H, W = offset.shape offset = offset.view(B, 2, -1, H, W) coords_h = torch.arange(H) + 0.5 coords_w = torch.arange(W) + 0.5 coords = torch.stack(torch.meshgrid([coords_w, coords_h]) ).transpose(1, 2).unsqueeze(1).unsqueeze(0).type(x.dtype).to(x.device) normalizer = torch.tensor([W, H], dtype=x.dtype, device=x.device).view(1, 2, 1, 1, 1) coords = 2 * (coords + offset) / normalizer - 1 coords = F.pixel_shuffle(coords.view(B, -1, H, W), scale).view( B, 2, -1, scale * H, scale * W).permute(0, 2, 3, 4, 1).contiguous().flatten(0, 1) return F.grid_sample(x.reshape(B * self.groups, -1, x.size(-2), x.size(-1)), coords, mode='bilinear', align_corners=False, padding_mode="border").view(B, -1, scale * H, scale * W) def forward(self, hr_x, lr_x, feat2sample): hr_x = self.norm_hr(hr_x) lr_x = self.norm_lr(lr_x) if self.direction_feat == 'sim': hr_sim = compute_similarity(hr_x, self.local_window, dilation=2, sim='cos') lr_sim = compute_similarity(lr_x, self.local_window, dilation=2, sim='cos') elif self.direction_feat == 'sim_concat': hr_sim = torch.cat([hr_x, compute_similarity(hr_x, self.local_window, dilation=2, sim='cos')], dim=1) lr_sim = torch.cat([lr_x, compute_similarity(lr_x, self.local_window, dilation=2, sim='cos')], dim=1) hr_x, lr_x = hr_sim, lr_sim # offset = self.get_offset(hr_x, lr_x) offset = self.get_offset_lp(hr_x, lr_x, hr_sim, lr_sim) return self.sample(feat2sample, offset) # def get_offset_lp(self, hr_x, lr_x): def get_offset_lp(self, hr_x, lr_x, hr_sim, lr_sim): if hasattr(self, 'direct_scale'): # offset = (self.offset(lr_x) + F.pixel_unshuffle(self.hr_offset(hr_x), self.scale)) * (self.direct_scale(lr_x) + F.pixel_unshuffle(self.hr_direct_scale(hr_x), self.scale)).sigmoid() + self.init_pos offset = (self.offset(lr_sim) + F.pixel_unshuffle(self.hr_offset(hr_sim), self.scale)) * (self.direct_scale(lr_x) + F.pixel_unshuffle(self.hr_direct_scale(hr_x), self.scale)).sigmoid() + self.init_pos # offset = (self.offset(lr_sim) + F.pixel_unshuffle(self.hr_offset(hr_sim), self.scale)) * (self.direct_scale(lr_sim) + F.pixel_unshuffle(self.hr_direct_scale(hr_sim), self.scale)).sigmoid() + self.init_pos else: offset = (self.offset(lr_x) + F.pixel_unshuffle(self.hr_offset(hr_x), self.scale)) * 0.25 + self.init_pos return offset def get_offset(self, hr_x, lr_x): if self.style == 'pl': raise NotImplementedError return self.get_offset_lp(hr_x, lr_x) def compute_similarity(input_tensor, k=3, dilation=1, sim='cos'): """ 计算输入张量中每一点与周围KxK范围内的点的余弦相似度。 参数: - input_tensor: 输入张量,形状为[B, C, H, W] - k: 范围大小,表示周围KxK范围内的点 返回: - 输出张量,形状为[B, KxK-1, H, W] """ B, C, H, W = input_tensor.shape # 使用零填充来处理边界情况 # padded_input = F.pad(input_tensor, (k // 2, k // 2, k // 2, k // 2), mode='constant', value=0) # 展平输入张量中每个点及其周围KxK范围内的点 unfold_tensor = F.unfold(input_tensor, k, padding=(k // 2) * dilation, dilation=dilation) # B, CxKxK, HW # print(unfold_tensor.shape) unfold_tensor = unfold_tensor.reshape(B, C, k**2, H, W) # 计算余弦相似度 if sim == 'cos': similarity = F.cosine_similarity(unfold_tensor[:, :, k * k // 2:k * k // 2 + 1], unfold_tensor[:, :, :], dim=1) elif sim == 'dot': similarity = unfold_tensor[:, :, k * k // 2:k * k // 2 + 1] * unfold_tensor[:, :, :] similarity = similarity.sum(dim=1) else: raise NotImplementedError # 移除中心点的余弦相似度,得到[KxK-1]的结果 similarity = torch.cat((similarity[:, :k * k // 2], similarity[:, k * k // 2 + 1:]), dim=1) # 将结果重塑回[B, KxK-1, H, W]的形状 similarity = similarity.view(B, k * k - 1, H, W) return similarity if __name__ == '__main__': # x = torch.rand(4, 128, 16, 16) # mask = torch.rand(4, 4 * 25, 16, 16) # carafe(x, mask, kernel_size=5, group=1, up=2) hr_feat = torch.rand(1, 128, 512, 512) lr_feat = torch.rand(1, 128, 256, 256) model = DesneFusion(hr_channels=128, lr_channels=128) mask_lr, hr_feat, lr_feat = model(hr_feat=hr_feat, lr_feat=lr_feat) print(mask_lr.shape)