Add readme
Browse files
README.md
ADDED
|
@@ -0,0 +1,81 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
library_name: stable-baselines3
|
| 3 |
+
tags:
|
| 4 |
+
- SpaceInvadersNoFrameskip-v4
|
| 5 |
+
- deep-reinforcement-learning
|
| 6 |
+
- reinforcement-learning
|
| 7 |
+
- stable-baselines3
|
| 8 |
+
model-index:
|
| 9 |
+
- name: DQN
|
| 10 |
+
results:
|
| 11 |
+
- task:
|
| 12 |
+
type: reinforcement-learning
|
| 13 |
+
name: reinforcement-learning
|
| 14 |
+
dataset:
|
| 15 |
+
name: SpaceInvadersNoFrameskip-v4
|
| 16 |
+
type: SpaceInvadersNoFrameskip-v4
|
| 17 |
+
metrics:
|
| 18 |
+
- type: mean_reward
|
| 19 |
+
value: 568.50 +/- 78.87
|
| 20 |
+
name: mean_reward
|
| 21 |
+
verified: false
|
| 22 |
+
---
|
| 23 |
+
|
| 24 |
+
# **DQN** Agent playing **SpaceInvadersNoFrameskip-v4**
|
| 25 |
+
This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4**
|
| 26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3)
|
| 27 |
+
and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo).
|
| 28 |
+
|
| 29 |
+
The RL Zoo is a training framework for Stable Baselines3
|
| 30 |
+
reinforcement learning agents,
|
| 31 |
+
with hyperparameter optimization and pre-trained agents included.
|
| 32 |
+
|
| 33 |
+
## Usage (with SB3 RL Zoo)
|
| 34 |
+
|
| 35 |
+
RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/>
|
| 36 |
+
SB3: https://github.com/DLR-RM/stable-baselines3<br/>
|
| 37 |
+
SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
|
| 38 |
+
|
| 39 |
+
Install the RL Zoo (with SB3 and SB3-Contrib):
|
| 40 |
+
```bash
|
| 41 |
+
pip install rl_zoo3
|
| 42 |
+
```
|
| 43 |
+
|
| 44 |
+
```
|
| 45 |
+
# Download model and save it into the logs/ folder
|
| 46 |
+
python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga Victarry -f logs/
|
| 47 |
+
python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/
|
| 48 |
+
```
|
| 49 |
+
|
| 50 |
+
If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do:
|
| 51 |
+
```
|
| 52 |
+
python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga Victarry -f logs/
|
| 53 |
+
python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/
|
| 54 |
+
```
|
| 55 |
+
|
| 56 |
+
## Training (with the RL Zoo)
|
| 57 |
+
```
|
| 58 |
+
python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/
|
| 59 |
+
# Upload the model and generate video (when possible)
|
| 60 |
+
python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga Victarry
|
| 61 |
+
```
|
| 62 |
+
|
| 63 |
+
## Hyperparameters
|
| 64 |
+
```python
|
| 65 |
+
OrderedDict([('batch_size', 32),
|
| 66 |
+
('buffer_size', 100000),
|
| 67 |
+
('env_wrapper',
|
| 68 |
+
['stable_baselines3.common.atari_wrappers.AtariWrapper']),
|
| 69 |
+
('exploration_final_eps', 0.01),
|
| 70 |
+
('exploration_fraction', 0.1),
|
| 71 |
+
('frame_stack', 4),
|
| 72 |
+
('gradient_steps', 1),
|
| 73 |
+
('learning_rate', 0.0001),
|
| 74 |
+
('learning_starts', 100000),
|
| 75 |
+
('n_timesteps', 1000000.0),
|
| 76 |
+
('optimize_memory_usage', False),
|
| 77 |
+
('policy', 'CnnPolicy'),
|
| 78 |
+
('target_update_interval', 1000),
|
| 79 |
+
('train_freq', 4),
|
| 80 |
+
('normalize', False)])
|
| 81 |
+
```
|