--- base_model: microsoft/dit-base-finetuned-rvlcdip tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: dit-base-finetuned-rvlcdip-finetuned-mobile-eye-tracking-dataset-v2 results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.8333333333333334 --- # dit-base-finetuned-rvlcdip-finetuned-mobile-eye-tracking-dataset-v2 This model is a fine-tuned version of [microsoft/dit-base-finetuned-rvlcdip](https://huggingface.co/microsoft/dit-base-finetuned-rvlcdip) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.4029 - Accuracy: 0.8333 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 0.86 | 3 | 0.6939 | 0.4792 | | No log | 2.0 | 7 | 0.6927 | 0.5417 | | 0.6938 | 2.86 | 10 | 0.6986 | 0.4167 | | 0.6938 | 4.0 | 14 | 0.6959 | 0.4583 | | 0.6938 | 4.86 | 17 | 0.6798 | 0.6875 | | 0.684 | 6.0 | 21 | 0.6890 | 0.5208 | | 0.684 | 6.86 | 24 | 0.6768 | 0.5833 | | 0.684 | 8.0 | 28 | 0.6637 | 0.6667 | | 0.6772 | 8.86 | 31 | 0.7099 | 0.5 | | 0.6772 | 10.0 | 35 | 0.6467 | 0.6042 | | 0.6772 | 10.86 | 38 | 0.6059 | 0.6875 | | 0.6283 | 12.0 | 42 | 0.5860 | 0.7292 | | 0.6283 | 12.86 | 45 | 0.5670 | 0.7708 | | 0.6283 | 14.0 | 49 | 0.5677 | 0.6875 | | 0.5712 | 14.86 | 52 | 0.5453 | 0.6875 | | 0.5712 | 16.0 | 56 | 0.4991 | 0.7708 | | 0.5712 | 16.86 | 59 | 0.4830 | 0.75 | | 0.5485 | 18.0 | 63 | 0.4485 | 0.7917 | | 0.5485 | 18.86 | 66 | 0.4268 | 0.8542 | | 0.506 | 20.0 | 70 | 0.4588 | 0.7708 | | 0.506 | 20.86 | 73 | 0.4412 | 0.75 | | 0.506 | 22.0 | 77 | 0.4099 | 0.8333 | | 0.4636 | 22.86 | 80 | 0.4005 | 0.875 | | 0.4636 | 24.0 | 84 | 0.4039 | 0.8333 | | 0.4636 | 24.86 | 87 | 0.4040 | 0.8333 | | 0.4453 | 25.71 | 90 | 0.4029 | 0.8333 | ### Framework versions - Transformers 4.33.0 - Pytorch 2.6.0+cu124 - Datasets 3.5.0 - Tokenizers 0.13.3