Visdom9 commited on
Commit
3254881
·
1 Parent(s): 196e35f

Pushing fine-tuned Norah model

Browse files
download_dataset.py ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from datasets import load_dataset
2
+
3
+ # Download the OpenAssistant dataset
4
+ dataset = load_dataset("OpenAssistant/oasst1", split="train")
5
+
6
+ # Keep only French conversations
7
+ dataset = dataset.filter(lambda x: x["lang"] == "fr")
8
+
9
+ # Print an example to check if it's correct
10
+ print("Example conversation from dataset:")
11
+ print(dataset[0])
fine_tune_norah.py ADDED
@@ -0,0 +1,54 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from transformers import AutoModelForCausalLM, AutoTokenizer, TrainingArguments, Trainer
2
+ from peft import get_peft_model, LoraConfig, TaskType
3
+ from datasets import load_from_disk
4
+ import torch
5
+
6
+
7
+ # Load tokenizer and model
8
+ model_name = "Visdom9/Norah"
9
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
10
+ model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.float32, device_map={"": "cpu"})
11
+
12
+
13
+ # Apply LoRA (Low-Rank Adaptation)
14
+ config = LoraConfig(
15
+ task_type="CAUSAL_LM", # Correct Task Type
16
+ r=8,
17
+ lora_alpha=32,
18
+ lora_dropout=0.1
19
+ )
20
+
21
+
22
+ model = get_peft_model(model, config)
23
+
24
+ # Load the tokenized dataset
25
+ tokenized_dataset = load_from_disk("tokenized_norah")
26
+
27
+ # Training arguments
28
+ training_args = TrainingArguments(
29
+ output_dir="./norah_lora",
30
+ per_device_train_batch_size=1, # ✅ Lower batch size to avoid memory issues
31
+ gradient_accumulation_steps=2, # ✅ Reduce accumulation steps
32
+ learning_rate=5e-5,
33
+ num_train_epochs=3,
34
+ save_steps=500,
35
+ save_total_limit=2,
36
+ logging_steps=10,
37
+ fp16=False # ✅ Disable FP16 because you're using CPU
38
+ )
39
+
40
+
41
+ trainer = Trainer(
42
+ model=model,
43
+ args=training_args,
44
+ train_dataset=tokenized_dataset,
45
+ )
46
+
47
+ # Train the model
48
+ trainer.train()
49
+
50
+ # Save the fine-tuned model
51
+ model.save_pretrained("./norah_lora")
52
+ tokenizer.save_pretrained("./norah_lora")
53
+
54
+ print("✅ Fine-tuning complete! Model saved in 'norah_lora'")
norah_lora/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: Visdom9/Norah
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.14.0
norah_lora/adapter_config.json ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "Visdom9/Norah",
5
+ "bias": "none",
6
+ "eva_config": null,
7
+ "exclude_modules": null,
8
+ "fan_in_fan_out": false,
9
+ "inference_mode": true,
10
+ "init_lora_weights": true,
11
+ "layer_replication": null,
12
+ "layers_pattern": null,
13
+ "layers_to_transform": null,
14
+ "loftq_config": {},
15
+ "lora_alpha": 32,
16
+ "lora_bias": false,
17
+ "lora_dropout": 0.1,
18
+ "megatron_config": null,
19
+ "megatron_core": "megatron.core",
20
+ "modules_to_save": null,
21
+ "peft_type": "LORA",
22
+ "r": 8,
23
+ "rank_pattern": {},
24
+ "revision": null,
25
+ "target_modules": [
26
+ "v_proj",
27
+ "q_proj"
28
+ ],
29
+ "task_type": "CAUSAL_LM",
30
+ "use_dora": false,
31
+ "use_rslora": false
32
+ }
norah_lora/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6d59cff2a6bd8bd4549db675d631da3cdb3d83feba06da5fefc2970ca60dd38c
3
+ size 1284192
norah_lora/checkpoint-3500/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: Visdom9/Norah
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.14.0
norah_lora/checkpoint-3500/adapter_config.json ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "Visdom9/Norah",
5
+ "bias": "none",
6
+ "eva_config": null,
7
+ "exclude_modules": null,
8
+ "fan_in_fan_out": false,
9
+ "inference_mode": true,
10
+ "init_lora_weights": true,
11
+ "layer_replication": null,
12
+ "layers_pattern": null,
13
+ "layers_to_transform": null,
14
+ "loftq_config": {},
15
+ "lora_alpha": 32,
16
+ "lora_bias": false,
17
+ "lora_dropout": 0.1,
18
+ "megatron_config": null,
19
+ "megatron_core": "megatron.core",
20
+ "modules_to_save": null,
21
+ "peft_type": "LORA",
22
+ "r": 8,
23
+ "rank_pattern": {},
24
+ "revision": null,
25
+ "target_modules": [
26
+ "v_proj",
27
+ "q_proj"
28
+ ],
29
+ "task_type": "CAUSAL_LM",
30
+ "use_dora": false,
31
+ "use_rslora": false
32
+ }
norah_lora/checkpoint-3500/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:abb60d3c7375456653ede5d88728016b021fe37d0d0a4968d963ae7352d781c4
3
+ size 1284192
norah_lora/checkpoint-3500/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c871457043d5fe60aa15c7184bc7bf0bf053b7bfb866342354591898b241cec6
3
+ size 2595258
norah_lora/checkpoint-3500/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9c7c4ae0dd11eccf6b8e9788335c054c607a3525d3b01061cc9e98dbb70689a4
3
+ size 13990
norah_lora/checkpoint-3500/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a097afe2de16207c7fe1741d5d79682d0a7fcdebfa8a93b583133d901a5e6f89
3
+ size 1064
norah_lora/checkpoint-3500/trainer_state.json ADDED
@@ -0,0 +1,2483 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 2.8294260307194827,
5
+ "eval_steps": 500,
6
+ "global_step": 3500,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.008084074373484237,
13
+ "grad_norm": Infinity,
14
+ "learning_rate": 4.98652654271086e-05,
15
+ "loss": 1.3186,
16
+ "step": 10
17
+ },
18
+ {
19
+ "epoch": 0.016168148746968473,
20
+ "grad_norm": Infinity,
21
+ "learning_rate": 4.973053085421719e-05,
22
+ "loss": 1.6363,
23
+ "step": 20
24
+ },
25
+ {
26
+ "epoch": 0.024252223120452707,
27
+ "grad_norm": Infinity,
28
+ "learning_rate": 4.959579628132579e-05,
29
+ "loss": 1.8313,
30
+ "step": 30
31
+ },
32
+ {
33
+ "epoch": 0.03233629749393695,
34
+ "grad_norm": Infinity,
35
+ "learning_rate": 4.946106170843439e-05,
36
+ "loss": 1.646,
37
+ "step": 40
38
+ },
39
+ {
40
+ "epoch": 0.04042037186742118,
41
+ "grad_norm": Infinity,
42
+ "learning_rate": 4.932632713554298e-05,
43
+ "loss": 1.4233,
44
+ "step": 50
45
+ },
46
+ {
47
+ "epoch": 0.04850444624090541,
48
+ "grad_norm": Infinity,
49
+ "learning_rate": 4.919159256265158e-05,
50
+ "loss": 1.8705,
51
+ "step": 60
52
+ },
53
+ {
54
+ "epoch": 0.056588520614389654,
55
+ "grad_norm": Infinity,
56
+ "learning_rate": 4.905685798976018e-05,
57
+ "loss": 1.7552,
58
+ "step": 70
59
+ },
60
+ {
61
+ "epoch": 0.0646725949878739,
62
+ "grad_norm": Infinity,
63
+ "learning_rate": 4.892212341686877e-05,
64
+ "loss": 1.1921,
65
+ "step": 80
66
+ },
67
+ {
68
+ "epoch": 0.07275666936135812,
69
+ "grad_norm": Infinity,
70
+ "learning_rate": 4.878738884397737e-05,
71
+ "loss": 1.4613,
72
+ "step": 90
73
+ },
74
+ {
75
+ "epoch": 0.08084074373484236,
76
+ "grad_norm": Infinity,
77
+ "learning_rate": 4.865265427108596e-05,
78
+ "loss": 0.6314,
79
+ "step": 100
80
+ },
81
+ {
82
+ "epoch": 0.0889248181083266,
83
+ "grad_norm": Infinity,
84
+ "learning_rate": 4.851791969819456e-05,
85
+ "loss": 1.8646,
86
+ "step": 110
87
+ },
88
+ {
89
+ "epoch": 0.09700889248181083,
90
+ "grad_norm": Infinity,
91
+ "learning_rate": 4.8383185125303156e-05,
92
+ "loss": 1.4315,
93
+ "step": 120
94
+ },
95
+ {
96
+ "epoch": 0.10509296685529507,
97
+ "grad_norm": Infinity,
98
+ "learning_rate": 4.824845055241175e-05,
99
+ "loss": 2.6826,
100
+ "step": 130
101
+ },
102
+ {
103
+ "epoch": 0.11317704122877931,
104
+ "grad_norm": Infinity,
105
+ "learning_rate": 4.8113715979520346e-05,
106
+ "loss": 2.2289,
107
+ "step": 140
108
+ },
109
+ {
110
+ "epoch": 0.12126111560226355,
111
+ "grad_norm": Infinity,
112
+ "learning_rate": 4.7978981406628945e-05,
113
+ "loss": 1.6823,
114
+ "step": 150
115
+ },
116
+ {
117
+ "epoch": 0.1293451899757478,
118
+ "grad_norm": Infinity,
119
+ "learning_rate": 4.7844246833737536e-05,
120
+ "loss": 0.7194,
121
+ "step": 160
122
+ },
123
+ {
124
+ "epoch": 0.137429264349232,
125
+ "grad_norm": Infinity,
126
+ "learning_rate": 4.7709512260846135e-05,
127
+ "loss": 2.28,
128
+ "step": 170
129
+ },
130
+ {
131
+ "epoch": 0.14551333872271624,
132
+ "grad_norm": Infinity,
133
+ "learning_rate": 4.757477768795473e-05,
134
+ "loss": 1.156,
135
+ "step": 180
136
+ },
137
+ {
138
+ "epoch": 0.15359741309620048,
139
+ "grad_norm": Infinity,
140
+ "learning_rate": 4.7440043115063325e-05,
141
+ "loss": 2.0865,
142
+ "step": 190
143
+ },
144
+ {
145
+ "epoch": 0.16168148746968472,
146
+ "grad_norm": Infinity,
147
+ "learning_rate": 4.730530854217192e-05,
148
+ "loss": 1.7647,
149
+ "step": 200
150
+ },
151
+ {
152
+ "epoch": 0.16976556184316896,
153
+ "grad_norm": Infinity,
154
+ "learning_rate": 4.717057396928052e-05,
155
+ "loss": 2.3384,
156
+ "step": 210
157
+ },
158
+ {
159
+ "epoch": 0.1778496362166532,
160
+ "grad_norm": Infinity,
161
+ "learning_rate": 4.703583939638911e-05,
162
+ "loss": 2.5532,
163
+ "step": 220
164
+ },
165
+ {
166
+ "epoch": 0.18593371059013744,
167
+ "grad_norm": Infinity,
168
+ "learning_rate": 4.690110482349771e-05,
169
+ "loss": 1.016,
170
+ "step": 230
171
+ },
172
+ {
173
+ "epoch": 0.19401778496362165,
174
+ "grad_norm": Infinity,
175
+ "learning_rate": 4.67663702506063e-05,
176
+ "loss": 2.1508,
177
+ "step": 240
178
+ },
179
+ {
180
+ "epoch": 0.2021018593371059,
181
+ "grad_norm": Infinity,
182
+ "learning_rate": 4.66316356777149e-05,
183
+ "loss": 1.267,
184
+ "step": 250
185
+ },
186
+ {
187
+ "epoch": 0.21018593371059013,
188
+ "grad_norm": Infinity,
189
+ "learning_rate": 4.64969011048235e-05,
190
+ "loss": 1.28,
191
+ "step": 260
192
+ },
193
+ {
194
+ "epoch": 0.21827000808407437,
195
+ "grad_norm": Infinity,
196
+ "learning_rate": 4.636216653193209e-05,
197
+ "loss": 1.6061,
198
+ "step": 270
199
+ },
200
+ {
201
+ "epoch": 0.22635408245755861,
202
+ "grad_norm": Infinity,
203
+ "learning_rate": 4.622743195904069e-05,
204
+ "loss": 0.7908,
205
+ "step": 280
206
+ },
207
+ {
208
+ "epoch": 0.23443815683104285,
209
+ "grad_norm": Infinity,
210
+ "learning_rate": 4.609269738614929e-05,
211
+ "loss": 1.8026,
212
+ "step": 290
213
+ },
214
+ {
215
+ "epoch": 0.2425222312045271,
216
+ "grad_norm": Infinity,
217
+ "learning_rate": 4.595796281325788e-05,
218
+ "loss": 1.2974,
219
+ "step": 300
220
+ },
221
+ {
222
+ "epoch": 0.25060630557801133,
223
+ "grad_norm": Infinity,
224
+ "learning_rate": 4.582322824036648e-05,
225
+ "loss": 1.885,
226
+ "step": 310
227
+ },
228
+ {
229
+ "epoch": 0.2586903799514956,
230
+ "grad_norm": Infinity,
231
+ "learning_rate": 4.568849366747508e-05,
232
+ "loss": 1.2212,
233
+ "step": 320
234
+ },
235
+ {
236
+ "epoch": 0.2667744543249798,
237
+ "grad_norm": Infinity,
238
+ "learning_rate": 4.555375909458367e-05,
239
+ "loss": 1.5874,
240
+ "step": 330
241
+ },
242
+ {
243
+ "epoch": 0.274858528698464,
244
+ "grad_norm": Infinity,
245
+ "learning_rate": 4.541902452169227e-05,
246
+ "loss": 0.8497,
247
+ "step": 340
248
+ },
249
+ {
250
+ "epoch": 0.28294260307194824,
251
+ "grad_norm": Infinity,
252
+ "learning_rate": 4.5284289948800865e-05,
253
+ "loss": 1.1971,
254
+ "step": 350
255
+ },
256
+ {
257
+ "epoch": 0.2910266774454325,
258
+ "grad_norm": Infinity,
259
+ "learning_rate": 4.514955537590946e-05,
260
+ "loss": 2.5525,
261
+ "step": 360
262
+ },
263
+ {
264
+ "epoch": 0.2991107518189167,
265
+ "grad_norm": Infinity,
266
+ "learning_rate": 4.5014820803018055e-05,
267
+ "loss": 0.5229,
268
+ "step": 370
269
+ },
270
+ {
271
+ "epoch": 0.30719482619240096,
272
+ "grad_norm": Infinity,
273
+ "learning_rate": 4.488008623012665e-05,
274
+ "loss": 1.9758,
275
+ "step": 380
276
+ },
277
+ {
278
+ "epoch": 0.3152789005658852,
279
+ "grad_norm": Infinity,
280
+ "learning_rate": 4.4745351657235245e-05,
281
+ "loss": 1.5789,
282
+ "step": 390
283
+ },
284
+ {
285
+ "epoch": 0.32336297493936944,
286
+ "grad_norm": Infinity,
287
+ "learning_rate": 4.4610617084343844e-05,
288
+ "loss": 2.2642,
289
+ "step": 400
290
+ },
291
+ {
292
+ "epoch": 0.3314470493128537,
293
+ "grad_norm": Infinity,
294
+ "learning_rate": 4.447588251145244e-05,
295
+ "loss": 2.1261,
296
+ "step": 410
297
+ },
298
+ {
299
+ "epoch": 0.3395311236863379,
300
+ "grad_norm": Infinity,
301
+ "learning_rate": 4.434114793856104e-05,
302
+ "loss": 2.9391,
303
+ "step": 420
304
+ },
305
+ {
306
+ "epoch": 0.34761519805982216,
307
+ "grad_norm": Infinity,
308
+ "learning_rate": 4.420641336566964e-05,
309
+ "loss": 1.7748,
310
+ "step": 430
311
+ },
312
+ {
313
+ "epoch": 0.3556992724333064,
314
+ "grad_norm": Infinity,
315
+ "learning_rate": 4.407167879277823e-05,
316
+ "loss": 1.3519,
317
+ "step": 440
318
+ },
319
+ {
320
+ "epoch": 0.36378334680679064,
321
+ "grad_norm": Infinity,
322
+ "learning_rate": 4.393694421988683e-05,
323
+ "loss": 1.6652,
324
+ "step": 450
325
+ },
326
+ {
327
+ "epoch": 0.3718674211802749,
328
+ "grad_norm": Infinity,
329
+ "learning_rate": 4.380220964699542e-05,
330
+ "loss": 1.7532,
331
+ "step": 460
332
+ },
333
+ {
334
+ "epoch": 0.3799514955537591,
335
+ "grad_norm": Infinity,
336
+ "learning_rate": 4.366747507410402e-05,
337
+ "loss": 1.8121,
338
+ "step": 470
339
+ },
340
+ {
341
+ "epoch": 0.3880355699272433,
342
+ "grad_norm": Infinity,
343
+ "learning_rate": 4.353274050121262e-05,
344
+ "loss": 1.0565,
345
+ "step": 480
346
+ },
347
+ {
348
+ "epoch": 0.39611964430072755,
349
+ "grad_norm": Infinity,
350
+ "learning_rate": 4.339800592832121e-05,
351
+ "loss": 2.5515,
352
+ "step": 490
353
+ },
354
+ {
355
+ "epoch": 0.4042037186742118,
356
+ "grad_norm": Infinity,
357
+ "learning_rate": 4.326327135542981e-05,
358
+ "loss": 1.8491,
359
+ "step": 500
360
+ },
361
+ {
362
+ "epoch": 0.412287793047696,
363
+ "grad_norm": Infinity,
364
+ "learning_rate": 4.3128536782538406e-05,
365
+ "loss": 1.3268,
366
+ "step": 510
367
+ },
368
+ {
369
+ "epoch": 0.42037186742118027,
370
+ "grad_norm": Infinity,
371
+ "learning_rate": 4.2993802209647e-05,
372
+ "loss": 2.3801,
373
+ "step": 520
374
+ },
375
+ {
376
+ "epoch": 0.4284559417946645,
377
+ "grad_norm": Infinity,
378
+ "learning_rate": 4.2859067636755596e-05,
379
+ "loss": 2.3338,
380
+ "step": 530
381
+ },
382
+ {
383
+ "epoch": 0.43654001616814875,
384
+ "grad_norm": Infinity,
385
+ "learning_rate": 4.2724333063864194e-05,
386
+ "loss": 1.5153,
387
+ "step": 540
388
+ },
389
+ {
390
+ "epoch": 0.444624090541633,
391
+ "grad_norm": Infinity,
392
+ "learning_rate": 4.2589598490972786e-05,
393
+ "loss": 0.8897,
394
+ "step": 550
395
+ },
396
+ {
397
+ "epoch": 0.45270816491511723,
398
+ "grad_norm": Infinity,
399
+ "learning_rate": 4.2454863918081384e-05,
400
+ "loss": 0.8557,
401
+ "step": 560
402
+ },
403
+ {
404
+ "epoch": 0.46079223928860147,
405
+ "grad_norm": Infinity,
406
+ "learning_rate": 4.232012934518998e-05,
407
+ "loss": 1.021,
408
+ "step": 570
409
+ },
410
+ {
411
+ "epoch": 0.4688763136620857,
412
+ "grad_norm": Infinity,
413
+ "learning_rate": 4.2185394772298574e-05,
414
+ "loss": 1.3295,
415
+ "step": 580
416
+ },
417
+ {
418
+ "epoch": 0.47696038803556995,
419
+ "grad_norm": Infinity,
420
+ "learning_rate": 4.205066019940717e-05,
421
+ "loss": 2.0716,
422
+ "step": 590
423
+ },
424
+ {
425
+ "epoch": 0.4850444624090542,
426
+ "grad_norm": Infinity,
427
+ "learning_rate": 4.1915925626515764e-05,
428
+ "loss": 2.5046,
429
+ "step": 600
430
+ },
431
+ {
432
+ "epoch": 0.4931285367825384,
433
+ "grad_norm": Infinity,
434
+ "learning_rate": 4.178119105362436e-05,
435
+ "loss": 1.4814,
436
+ "step": 610
437
+ },
438
+ {
439
+ "epoch": 0.5012126111560227,
440
+ "grad_norm": Infinity,
441
+ "learning_rate": 4.164645648073296e-05,
442
+ "loss": 1.5643,
443
+ "step": 620
444
+ },
445
+ {
446
+ "epoch": 0.5092966855295069,
447
+ "grad_norm": Infinity,
448
+ "learning_rate": 4.151172190784155e-05,
449
+ "loss": 1.4721,
450
+ "step": 630
451
+ },
452
+ {
453
+ "epoch": 0.5173807599029911,
454
+ "grad_norm": Infinity,
455
+ "learning_rate": 4.137698733495015e-05,
456
+ "loss": 2.1584,
457
+ "step": 640
458
+ },
459
+ {
460
+ "epoch": 0.5254648342764754,
461
+ "grad_norm": Infinity,
462
+ "learning_rate": 4.124225276205875e-05,
463
+ "loss": 0.9858,
464
+ "step": 650
465
+ },
466
+ {
467
+ "epoch": 0.5335489086499596,
468
+ "grad_norm": Infinity,
469
+ "learning_rate": 4.110751818916734e-05,
470
+ "loss": 2.2872,
471
+ "step": 660
472
+ },
473
+ {
474
+ "epoch": 0.5416329830234439,
475
+ "grad_norm": Infinity,
476
+ "learning_rate": 4.097278361627594e-05,
477
+ "loss": 1.8746,
478
+ "step": 670
479
+ },
480
+ {
481
+ "epoch": 0.549717057396928,
482
+ "grad_norm": Infinity,
483
+ "learning_rate": 4.083804904338454e-05,
484
+ "loss": 1.5985,
485
+ "step": 680
486
+ },
487
+ {
488
+ "epoch": 0.5578011317704122,
489
+ "grad_norm": Infinity,
490
+ "learning_rate": 4.070331447049313e-05,
491
+ "loss": 1.4411,
492
+ "step": 690
493
+ },
494
+ {
495
+ "epoch": 0.5658852061438965,
496
+ "grad_norm": Infinity,
497
+ "learning_rate": 4.056857989760173e-05,
498
+ "loss": 1.6405,
499
+ "step": 700
500
+ },
501
+ {
502
+ "epoch": 0.5739692805173807,
503
+ "grad_norm": Infinity,
504
+ "learning_rate": 4.0433845324710326e-05,
505
+ "loss": 0.9719,
506
+ "step": 710
507
+ },
508
+ {
509
+ "epoch": 0.582053354890865,
510
+ "grad_norm": Infinity,
511
+ "learning_rate": 4.029911075181892e-05,
512
+ "loss": 0.8405,
513
+ "step": 720
514
+ },
515
+ {
516
+ "epoch": 0.5901374292643492,
517
+ "grad_norm": Infinity,
518
+ "learning_rate": 4.0164376178927516e-05,
519
+ "loss": 0.5547,
520
+ "step": 730
521
+ },
522
+ {
523
+ "epoch": 0.5982215036378334,
524
+ "grad_norm": Infinity,
525
+ "learning_rate": 4.002964160603611e-05,
526
+ "loss": 1.0534,
527
+ "step": 740
528
+ },
529
+ {
530
+ "epoch": 0.6063055780113177,
531
+ "grad_norm": Infinity,
532
+ "learning_rate": 3.9894907033144707e-05,
533
+ "loss": 0.827,
534
+ "step": 750
535
+ },
536
+ {
537
+ "epoch": 0.6143896523848019,
538
+ "grad_norm": Infinity,
539
+ "learning_rate": 3.9760172460253305e-05,
540
+ "loss": 2.7736,
541
+ "step": 760
542
+ },
543
+ {
544
+ "epoch": 0.6224737267582862,
545
+ "grad_norm": Infinity,
546
+ "learning_rate": 3.9625437887361897e-05,
547
+ "loss": 1.637,
548
+ "step": 770
549
+ },
550
+ {
551
+ "epoch": 0.6305578011317704,
552
+ "grad_norm": Infinity,
553
+ "learning_rate": 3.9490703314470495e-05,
554
+ "loss": 2.0057,
555
+ "step": 780
556
+ },
557
+ {
558
+ "epoch": 0.6386418755052546,
559
+ "grad_norm": Infinity,
560
+ "learning_rate": 3.935596874157909e-05,
561
+ "loss": 1.1342,
562
+ "step": 790
563
+ },
564
+ {
565
+ "epoch": 0.6467259498787389,
566
+ "grad_norm": Infinity,
567
+ "learning_rate": 3.9221234168687685e-05,
568
+ "loss": 0.9694,
569
+ "step": 800
570
+ },
571
+ {
572
+ "epoch": 0.6548100242522231,
573
+ "grad_norm": Infinity,
574
+ "learning_rate": 3.908649959579628e-05,
575
+ "loss": 2.2358,
576
+ "step": 810
577
+ },
578
+ {
579
+ "epoch": 0.6628940986257074,
580
+ "grad_norm": Infinity,
581
+ "learning_rate": 3.895176502290488e-05,
582
+ "loss": 0.7282,
583
+ "step": 820
584
+ },
585
+ {
586
+ "epoch": 0.6709781729991916,
587
+ "grad_norm": Infinity,
588
+ "learning_rate": 3.8817030450013473e-05,
589
+ "loss": 1.0698,
590
+ "step": 830
591
+ },
592
+ {
593
+ "epoch": 0.6790622473726758,
594
+ "grad_norm": Infinity,
595
+ "learning_rate": 3.868229587712207e-05,
596
+ "loss": 1.3923,
597
+ "step": 840
598
+ },
599
+ {
600
+ "epoch": 0.6871463217461601,
601
+ "grad_norm": Infinity,
602
+ "learning_rate": 3.854756130423067e-05,
603
+ "loss": 0.8056,
604
+ "step": 850
605
+ },
606
+ {
607
+ "epoch": 0.6952303961196443,
608
+ "grad_norm": Infinity,
609
+ "learning_rate": 3.841282673133926e-05,
610
+ "loss": 1.6625,
611
+ "step": 860
612
+ },
613
+ {
614
+ "epoch": 0.7033144704931286,
615
+ "grad_norm": Infinity,
616
+ "learning_rate": 3.827809215844786e-05,
617
+ "loss": 1.2065,
618
+ "step": 870
619
+ },
620
+ {
621
+ "epoch": 0.7113985448666128,
622
+ "grad_norm": Infinity,
623
+ "learning_rate": 3.814335758555645e-05,
624
+ "loss": 1.1378,
625
+ "step": 880
626
+ },
627
+ {
628
+ "epoch": 0.719482619240097,
629
+ "grad_norm": Infinity,
630
+ "learning_rate": 3.800862301266505e-05,
631
+ "loss": 1.4192,
632
+ "step": 890
633
+ },
634
+ {
635
+ "epoch": 0.7275666936135813,
636
+ "grad_norm": Infinity,
637
+ "learning_rate": 3.787388843977365e-05,
638
+ "loss": 1.2827,
639
+ "step": 900
640
+ },
641
+ {
642
+ "epoch": 0.7356507679870655,
643
+ "grad_norm": Infinity,
644
+ "learning_rate": 3.773915386688224e-05,
645
+ "loss": 0.5413,
646
+ "step": 910
647
+ },
648
+ {
649
+ "epoch": 0.7437348423605498,
650
+ "grad_norm": Infinity,
651
+ "learning_rate": 3.760441929399084e-05,
652
+ "loss": 1.524,
653
+ "step": 920
654
+ },
655
+ {
656
+ "epoch": 0.751818916734034,
657
+ "grad_norm": Infinity,
658
+ "learning_rate": 3.746968472109944e-05,
659
+ "loss": 2.3918,
660
+ "step": 930
661
+ },
662
+ {
663
+ "epoch": 0.7599029911075182,
664
+ "grad_norm": Infinity,
665
+ "learning_rate": 3.733495014820803e-05,
666
+ "loss": 1.4762,
667
+ "step": 940
668
+ },
669
+ {
670
+ "epoch": 0.7679870654810024,
671
+ "grad_norm": Infinity,
672
+ "learning_rate": 3.720021557531663e-05,
673
+ "loss": 1.2758,
674
+ "step": 950
675
+ },
676
+ {
677
+ "epoch": 0.7760711398544866,
678
+ "grad_norm": Infinity,
679
+ "learning_rate": 3.7065481002425226e-05,
680
+ "loss": 1.2247,
681
+ "step": 960
682
+ },
683
+ {
684
+ "epoch": 0.7841552142279709,
685
+ "grad_norm": Infinity,
686
+ "learning_rate": 3.693074642953382e-05,
687
+ "loss": 1.3217,
688
+ "step": 970
689
+ },
690
+ {
691
+ "epoch": 0.7922392886014551,
692
+ "grad_norm": Infinity,
693
+ "learning_rate": 3.6796011856642416e-05,
694
+ "loss": 1.0781,
695
+ "step": 980
696
+ },
697
+ {
698
+ "epoch": 0.8003233629749393,
699
+ "grad_norm": Infinity,
700
+ "learning_rate": 3.6661277283751014e-05,
701
+ "loss": 1.1996,
702
+ "step": 990
703
+ },
704
+ {
705
+ "epoch": 0.8084074373484236,
706
+ "grad_norm": Infinity,
707
+ "learning_rate": 3.6526542710859606e-05,
708
+ "loss": 1.8774,
709
+ "step": 1000
710
+ },
711
+ {
712
+ "epoch": 0.8164915117219078,
713
+ "grad_norm": Infinity,
714
+ "learning_rate": 3.6391808137968204e-05,
715
+ "loss": 0.4993,
716
+ "step": 1010
717
+ },
718
+ {
719
+ "epoch": 0.824575586095392,
720
+ "grad_norm": Infinity,
721
+ "learning_rate": 3.6257073565076796e-05,
722
+ "loss": 1.1835,
723
+ "step": 1020
724
+ },
725
+ {
726
+ "epoch": 0.8326596604688763,
727
+ "grad_norm": Infinity,
728
+ "learning_rate": 3.6122338992185394e-05,
729
+ "loss": 1.6,
730
+ "step": 1030
731
+ },
732
+ {
733
+ "epoch": 0.8407437348423605,
734
+ "grad_norm": Infinity,
735
+ "learning_rate": 3.598760441929399e-05,
736
+ "loss": 2.5379,
737
+ "step": 1040
738
+ },
739
+ {
740
+ "epoch": 0.8488278092158448,
741
+ "grad_norm": Infinity,
742
+ "learning_rate": 3.5852869846402584e-05,
743
+ "loss": 1.0088,
744
+ "step": 1050
745
+ },
746
+ {
747
+ "epoch": 0.856911883589329,
748
+ "grad_norm": Infinity,
749
+ "learning_rate": 3.571813527351118e-05,
750
+ "loss": 2.2007,
751
+ "step": 1060
752
+ },
753
+ {
754
+ "epoch": 0.8649959579628133,
755
+ "grad_norm": Infinity,
756
+ "learning_rate": 3.558340070061978e-05,
757
+ "loss": 1.3587,
758
+ "step": 1070
759
+ },
760
+ {
761
+ "epoch": 0.8730800323362975,
762
+ "grad_norm": Infinity,
763
+ "learning_rate": 3.544866612772837e-05,
764
+ "loss": 3.0178,
765
+ "step": 1080
766
+ },
767
+ {
768
+ "epoch": 0.8811641067097817,
769
+ "grad_norm": Infinity,
770
+ "learning_rate": 3.531393155483697e-05,
771
+ "loss": 1.7664,
772
+ "step": 1090
773
+ },
774
+ {
775
+ "epoch": 0.889248181083266,
776
+ "grad_norm": Infinity,
777
+ "learning_rate": 3.517919698194557e-05,
778
+ "loss": 0.8585,
779
+ "step": 1100
780
+ },
781
+ {
782
+ "epoch": 0.8973322554567502,
783
+ "grad_norm": Infinity,
784
+ "learning_rate": 3.504446240905416e-05,
785
+ "loss": 1.5722,
786
+ "step": 1110
787
+ },
788
+ {
789
+ "epoch": 0.9054163298302345,
790
+ "grad_norm": Infinity,
791
+ "learning_rate": 3.490972783616276e-05,
792
+ "loss": 2.0158,
793
+ "step": 1120
794
+ },
795
+ {
796
+ "epoch": 0.9135004042037187,
797
+ "grad_norm": Infinity,
798
+ "learning_rate": 3.477499326327136e-05,
799
+ "loss": 1.8439,
800
+ "step": 1130
801
+ },
802
+ {
803
+ "epoch": 0.9215844785772029,
804
+ "grad_norm": Infinity,
805
+ "learning_rate": 3.464025869037995e-05,
806
+ "loss": 1.7193,
807
+ "step": 1140
808
+ },
809
+ {
810
+ "epoch": 0.9296685529506872,
811
+ "grad_norm": Infinity,
812
+ "learning_rate": 3.450552411748855e-05,
813
+ "loss": 0.8563,
814
+ "step": 1150
815
+ },
816
+ {
817
+ "epoch": 0.9377526273241714,
818
+ "grad_norm": Infinity,
819
+ "learning_rate": 3.4370789544597146e-05,
820
+ "loss": 1.2554,
821
+ "step": 1160
822
+ },
823
+ {
824
+ "epoch": 0.9458367016976557,
825
+ "grad_norm": Infinity,
826
+ "learning_rate": 3.423605497170574e-05,
827
+ "loss": 1.2612,
828
+ "step": 1170
829
+ },
830
+ {
831
+ "epoch": 0.9539207760711399,
832
+ "grad_norm": Infinity,
833
+ "learning_rate": 3.4101320398814336e-05,
834
+ "loss": 0.6833,
835
+ "step": 1180
836
+ },
837
+ {
838
+ "epoch": 0.9620048504446241,
839
+ "grad_norm": Infinity,
840
+ "learning_rate": 3.396658582592293e-05,
841
+ "loss": 0.7645,
842
+ "step": 1190
843
+ },
844
+ {
845
+ "epoch": 0.9700889248181084,
846
+ "grad_norm": Infinity,
847
+ "learning_rate": 3.3831851253031526e-05,
848
+ "loss": 1.7546,
849
+ "step": 1200
850
+ },
851
+ {
852
+ "epoch": 0.9781729991915926,
853
+ "grad_norm": Infinity,
854
+ "learning_rate": 3.3697116680140125e-05,
855
+ "loss": 2.0247,
856
+ "step": 1210
857
+ },
858
+ {
859
+ "epoch": 0.9862570735650767,
860
+ "grad_norm": Infinity,
861
+ "learning_rate": 3.356238210724872e-05,
862
+ "loss": 0.8708,
863
+ "step": 1220
864
+ },
865
+ {
866
+ "epoch": 0.994341147938561,
867
+ "grad_norm": Infinity,
868
+ "learning_rate": 3.342764753435732e-05,
869
+ "loss": 2.1135,
870
+ "step": 1230
871
+ },
872
+ {
873
+ "epoch": 1.0024252223120453,
874
+ "grad_norm": Infinity,
875
+ "learning_rate": 3.329291296146591e-05,
876
+ "loss": 1.73,
877
+ "step": 1240
878
+ },
879
+ {
880
+ "epoch": 1.0105092966855296,
881
+ "grad_norm": Infinity,
882
+ "learning_rate": 3.315817838857451e-05,
883
+ "loss": 1.5269,
884
+ "step": 1250
885
+ },
886
+ {
887
+ "epoch": 1.0185933710590138,
888
+ "grad_norm": Infinity,
889
+ "learning_rate": 3.302344381568311e-05,
890
+ "loss": 1.3657,
891
+ "step": 1260
892
+ },
893
+ {
894
+ "epoch": 1.026677445432498,
895
+ "grad_norm": Infinity,
896
+ "learning_rate": 3.28887092427917e-05,
897
+ "loss": 1.3771,
898
+ "step": 1270
899
+ },
900
+ {
901
+ "epoch": 1.0347615198059823,
902
+ "grad_norm": Infinity,
903
+ "learning_rate": 3.27539746699003e-05,
904
+ "loss": 0.9131,
905
+ "step": 1280
906
+ },
907
+ {
908
+ "epoch": 1.0428455941794665,
909
+ "grad_norm": Infinity,
910
+ "learning_rate": 3.26192400970089e-05,
911
+ "loss": 0.844,
912
+ "step": 1290
913
+ },
914
+ {
915
+ "epoch": 1.0509296685529508,
916
+ "grad_norm": Infinity,
917
+ "learning_rate": 3.248450552411749e-05,
918
+ "loss": 1.4511,
919
+ "step": 1300
920
+ },
921
+ {
922
+ "epoch": 1.059013742926435,
923
+ "grad_norm": Infinity,
924
+ "learning_rate": 3.234977095122609e-05,
925
+ "loss": 2.0453,
926
+ "step": 1310
927
+ },
928
+ {
929
+ "epoch": 1.0670978172999193,
930
+ "grad_norm": Infinity,
931
+ "learning_rate": 3.221503637833469e-05,
932
+ "loss": 1.4035,
933
+ "step": 1320
934
+ },
935
+ {
936
+ "epoch": 1.0751818916734033,
937
+ "grad_norm": Infinity,
938
+ "learning_rate": 3.208030180544328e-05,
939
+ "loss": 1.5244,
940
+ "step": 1330
941
+ },
942
+ {
943
+ "epoch": 1.0832659660468877,
944
+ "grad_norm": Infinity,
945
+ "learning_rate": 3.194556723255188e-05,
946
+ "loss": 0.8892,
947
+ "step": 1340
948
+ },
949
+ {
950
+ "epoch": 1.0913500404203718,
951
+ "grad_norm": Infinity,
952
+ "learning_rate": 3.1810832659660475e-05,
953
+ "loss": 1.6417,
954
+ "step": 1350
955
+ },
956
+ {
957
+ "epoch": 1.0994341147938562,
958
+ "grad_norm": Infinity,
959
+ "learning_rate": 3.167609808676907e-05,
960
+ "loss": 2.1219,
961
+ "step": 1360
962
+ },
963
+ {
964
+ "epoch": 1.1075181891673402,
965
+ "grad_norm": Infinity,
966
+ "learning_rate": 3.1541363513877665e-05,
967
+ "loss": 2.4549,
968
+ "step": 1370
969
+ },
970
+ {
971
+ "epoch": 1.1156022635408245,
972
+ "grad_norm": Infinity,
973
+ "learning_rate": 3.140662894098626e-05,
974
+ "loss": 1.1852,
975
+ "step": 1380
976
+ },
977
+ {
978
+ "epoch": 1.1236863379143087,
979
+ "grad_norm": Infinity,
980
+ "learning_rate": 3.1271894368094855e-05,
981
+ "loss": 2.5192,
982
+ "step": 1390
983
+ },
984
+ {
985
+ "epoch": 1.131770412287793,
986
+ "grad_norm": Infinity,
987
+ "learning_rate": 3.1137159795203454e-05,
988
+ "loss": 1.0584,
989
+ "step": 1400
990
+ },
991
+ {
992
+ "epoch": 1.1398544866612772,
993
+ "grad_norm": Infinity,
994
+ "learning_rate": 3.1002425222312045e-05,
995
+ "loss": 1.9475,
996
+ "step": 1410
997
+ },
998
+ {
999
+ "epoch": 1.1479385610347614,
1000
+ "grad_norm": Infinity,
1001
+ "learning_rate": 3.0867690649420644e-05,
1002
+ "loss": 1.3349,
1003
+ "step": 1420
1004
+ },
1005
+ {
1006
+ "epoch": 1.1560226354082457,
1007
+ "grad_norm": Infinity,
1008
+ "learning_rate": 3.073295607652924e-05,
1009
+ "loss": 2.005,
1010
+ "step": 1430
1011
+ },
1012
+ {
1013
+ "epoch": 1.16410670978173,
1014
+ "grad_norm": Infinity,
1015
+ "learning_rate": 3.0598221503637834e-05,
1016
+ "loss": 0.8468,
1017
+ "step": 1440
1018
+ },
1019
+ {
1020
+ "epoch": 1.1721907841552142,
1021
+ "grad_norm": Infinity,
1022
+ "learning_rate": 3.0463486930746432e-05,
1023
+ "loss": 1.3994,
1024
+ "step": 1450
1025
+ },
1026
+ {
1027
+ "epoch": 1.1802748585286984,
1028
+ "grad_norm": Infinity,
1029
+ "learning_rate": 3.0328752357855027e-05,
1030
+ "loss": 0.5119,
1031
+ "step": 1460
1032
+ },
1033
+ {
1034
+ "epoch": 1.1883589329021826,
1035
+ "grad_norm": Infinity,
1036
+ "learning_rate": 3.0194017784963626e-05,
1037
+ "loss": 0.7779,
1038
+ "step": 1470
1039
+ },
1040
+ {
1041
+ "epoch": 1.1964430072756669,
1042
+ "grad_norm": Infinity,
1043
+ "learning_rate": 3.005928321207222e-05,
1044
+ "loss": 1.7018,
1045
+ "step": 1480
1046
+ },
1047
+ {
1048
+ "epoch": 1.2045270816491511,
1049
+ "grad_norm": Infinity,
1050
+ "learning_rate": 2.9924548639180816e-05,
1051
+ "loss": 1.3685,
1052
+ "step": 1490
1053
+ },
1054
+ {
1055
+ "epoch": 1.2126111560226354,
1056
+ "grad_norm": Infinity,
1057
+ "learning_rate": 2.978981406628941e-05,
1058
+ "loss": 1.361,
1059
+ "step": 1500
1060
+ },
1061
+ {
1062
+ "epoch": 1.2206952303961196,
1063
+ "grad_norm": Infinity,
1064
+ "learning_rate": 2.965507949339801e-05,
1065
+ "loss": 1.5077,
1066
+ "step": 1510
1067
+ },
1068
+ {
1069
+ "epoch": 1.2287793047696038,
1070
+ "grad_norm": Infinity,
1071
+ "learning_rate": 2.9520344920506604e-05,
1072
+ "loss": 1.0513,
1073
+ "step": 1520
1074
+ },
1075
+ {
1076
+ "epoch": 1.236863379143088,
1077
+ "grad_norm": Infinity,
1078
+ "learning_rate": 2.93856103476152e-05,
1079
+ "loss": 1.6926,
1080
+ "step": 1530
1081
+ },
1082
+ {
1083
+ "epoch": 1.2449474535165723,
1084
+ "grad_norm": Infinity,
1085
+ "learning_rate": 2.9250875774723797e-05,
1086
+ "loss": 1.3084,
1087
+ "step": 1540
1088
+ },
1089
+ {
1090
+ "epoch": 1.2530315278900566,
1091
+ "grad_norm": Infinity,
1092
+ "learning_rate": 2.9116141201832392e-05,
1093
+ "loss": 1.8298,
1094
+ "step": 1550
1095
+ },
1096
+ {
1097
+ "epoch": 1.2611156022635408,
1098
+ "grad_norm": Infinity,
1099
+ "learning_rate": 2.8981406628940987e-05,
1100
+ "loss": 0.9793,
1101
+ "step": 1560
1102
+ },
1103
+ {
1104
+ "epoch": 1.269199676637025,
1105
+ "grad_norm": Infinity,
1106
+ "learning_rate": 2.8846672056049582e-05,
1107
+ "loss": 1.4149,
1108
+ "step": 1570
1109
+ },
1110
+ {
1111
+ "epoch": 1.2772837510105093,
1112
+ "grad_norm": Infinity,
1113
+ "learning_rate": 2.871193748315818e-05,
1114
+ "loss": 0.9485,
1115
+ "step": 1580
1116
+ },
1117
+ {
1118
+ "epoch": 1.2853678253839935,
1119
+ "grad_norm": Infinity,
1120
+ "learning_rate": 2.8577202910266776e-05,
1121
+ "loss": 1.6182,
1122
+ "step": 1590
1123
+ },
1124
+ {
1125
+ "epoch": 1.2934518997574778,
1126
+ "grad_norm": Infinity,
1127
+ "learning_rate": 2.844246833737537e-05,
1128
+ "loss": 0.9473,
1129
+ "step": 1600
1130
+ },
1131
+ {
1132
+ "epoch": 1.301535974130962,
1133
+ "grad_norm": Infinity,
1134
+ "learning_rate": 2.830773376448397e-05,
1135
+ "loss": 1.8231,
1136
+ "step": 1610
1137
+ },
1138
+ {
1139
+ "epoch": 1.3096200485044462,
1140
+ "grad_norm": Infinity,
1141
+ "learning_rate": 2.8172999191592564e-05,
1142
+ "loss": 1.687,
1143
+ "step": 1620
1144
+ },
1145
+ {
1146
+ "epoch": 1.3177041228779305,
1147
+ "grad_norm": Infinity,
1148
+ "learning_rate": 2.803826461870116e-05,
1149
+ "loss": 1.0405,
1150
+ "step": 1630
1151
+ },
1152
+ {
1153
+ "epoch": 1.3257881972514147,
1154
+ "grad_norm": Infinity,
1155
+ "learning_rate": 2.7903530045809754e-05,
1156
+ "loss": 1.2729,
1157
+ "step": 1640
1158
+ },
1159
+ {
1160
+ "epoch": 1.333872271624899,
1161
+ "grad_norm": Infinity,
1162
+ "learning_rate": 2.7768795472918353e-05,
1163
+ "loss": 1.7429,
1164
+ "step": 1650
1165
+ },
1166
+ {
1167
+ "epoch": 1.3419563459983832,
1168
+ "grad_norm": Infinity,
1169
+ "learning_rate": 2.7634060900026948e-05,
1170
+ "loss": 1.1652,
1171
+ "step": 1660
1172
+ },
1173
+ {
1174
+ "epoch": 1.3500404203718674,
1175
+ "grad_norm": Infinity,
1176
+ "learning_rate": 2.7499326327135543e-05,
1177
+ "loss": 1.6927,
1178
+ "step": 1670
1179
+ },
1180
+ {
1181
+ "epoch": 1.3581244947453517,
1182
+ "grad_norm": Infinity,
1183
+ "learning_rate": 2.736459175424414e-05,
1184
+ "loss": 1.1215,
1185
+ "step": 1680
1186
+ },
1187
+ {
1188
+ "epoch": 1.366208569118836,
1189
+ "grad_norm": Infinity,
1190
+ "learning_rate": 2.7229857181352736e-05,
1191
+ "loss": 1.0629,
1192
+ "step": 1690
1193
+ },
1194
+ {
1195
+ "epoch": 1.3742926434923202,
1196
+ "grad_norm": Infinity,
1197
+ "learning_rate": 2.709512260846133e-05,
1198
+ "loss": 1.0104,
1199
+ "step": 1700
1200
+ },
1201
+ {
1202
+ "epoch": 1.3823767178658044,
1203
+ "grad_norm": Infinity,
1204
+ "learning_rate": 2.6960388035569926e-05,
1205
+ "loss": 1.4327,
1206
+ "step": 1710
1207
+ },
1208
+ {
1209
+ "epoch": 1.3904607922392886,
1210
+ "grad_norm": Infinity,
1211
+ "learning_rate": 2.6825653462678525e-05,
1212
+ "loss": 1.0857,
1213
+ "step": 1720
1214
+ },
1215
+ {
1216
+ "epoch": 1.3985448666127729,
1217
+ "grad_norm": Infinity,
1218
+ "learning_rate": 2.669091888978712e-05,
1219
+ "loss": 1.7623,
1220
+ "step": 1730
1221
+ },
1222
+ {
1223
+ "epoch": 1.4066289409862571,
1224
+ "grad_norm": Infinity,
1225
+ "learning_rate": 2.6556184316895715e-05,
1226
+ "loss": 1.4973,
1227
+ "step": 1740
1228
+ },
1229
+ {
1230
+ "epoch": 1.4147130153597414,
1231
+ "grad_norm": Infinity,
1232
+ "learning_rate": 2.6421449744004313e-05,
1233
+ "loss": 1.313,
1234
+ "step": 1750
1235
+ },
1236
+ {
1237
+ "epoch": 1.4227970897332256,
1238
+ "grad_norm": Infinity,
1239
+ "learning_rate": 2.6286715171112908e-05,
1240
+ "loss": 1.1965,
1241
+ "step": 1760
1242
+ },
1243
+ {
1244
+ "epoch": 1.4308811641067098,
1245
+ "grad_norm": Infinity,
1246
+ "learning_rate": 2.6151980598221503e-05,
1247
+ "loss": 1.432,
1248
+ "step": 1770
1249
+ },
1250
+ {
1251
+ "epoch": 1.438965238480194,
1252
+ "grad_norm": Infinity,
1253
+ "learning_rate": 2.6017246025330098e-05,
1254
+ "loss": 1.3331,
1255
+ "step": 1780
1256
+ },
1257
+ {
1258
+ "epoch": 1.4470493128536783,
1259
+ "grad_norm": Infinity,
1260
+ "learning_rate": 2.5882511452438697e-05,
1261
+ "loss": 1.2561,
1262
+ "step": 1790
1263
+ },
1264
+ {
1265
+ "epoch": 1.4551333872271626,
1266
+ "grad_norm": Infinity,
1267
+ "learning_rate": 2.574777687954729e-05,
1268
+ "loss": 1.5896,
1269
+ "step": 1800
1270
+ },
1271
+ {
1272
+ "epoch": 1.4632174616006468,
1273
+ "grad_norm": Infinity,
1274
+ "learning_rate": 2.5613042306655887e-05,
1275
+ "loss": 2.9014,
1276
+ "step": 1810
1277
+ },
1278
+ {
1279
+ "epoch": 1.4713015359741308,
1280
+ "grad_norm": Infinity,
1281
+ "learning_rate": 2.5478307733764485e-05,
1282
+ "loss": 1.5244,
1283
+ "step": 1820
1284
+ },
1285
+ {
1286
+ "epoch": 1.4793856103476153,
1287
+ "grad_norm": Infinity,
1288
+ "learning_rate": 2.534357316087308e-05,
1289
+ "loss": 1.0577,
1290
+ "step": 1830
1291
+ },
1292
+ {
1293
+ "epoch": 1.4874696847210993,
1294
+ "grad_norm": Infinity,
1295
+ "learning_rate": 2.5208838587981675e-05,
1296
+ "loss": 1.2323,
1297
+ "step": 1840
1298
+ },
1299
+ {
1300
+ "epoch": 1.4955537590945838,
1301
+ "grad_norm": Infinity,
1302
+ "learning_rate": 2.5074104015090273e-05,
1303
+ "loss": 2.4222,
1304
+ "step": 1850
1305
+ },
1306
+ {
1307
+ "epoch": 1.5036378334680678,
1308
+ "grad_norm": Infinity,
1309
+ "learning_rate": 2.4939369442198872e-05,
1310
+ "loss": 1.9402,
1311
+ "step": 1860
1312
+ },
1313
+ {
1314
+ "epoch": 1.5117219078415522,
1315
+ "grad_norm": Infinity,
1316
+ "learning_rate": 2.4804634869307467e-05,
1317
+ "loss": 2.2911,
1318
+ "step": 1870
1319
+ },
1320
+ {
1321
+ "epoch": 1.5198059822150363,
1322
+ "grad_norm": Infinity,
1323
+ "learning_rate": 2.4669900296416062e-05,
1324
+ "loss": 1.7301,
1325
+ "step": 1880
1326
+ },
1327
+ {
1328
+ "epoch": 1.5278900565885207,
1329
+ "grad_norm": Infinity,
1330
+ "learning_rate": 2.4535165723524657e-05,
1331
+ "loss": 0.6863,
1332
+ "step": 1890
1333
+ },
1334
+ {
1335
+ "epoch": 1.5359741309620047,
1336
+ "grad_norm": Infinity,
1337
+ "learning_rate": 2.4400431150633255e-05,
1338
+ "loss": 1.8456,
1339
+ "step": 1900
1340
+ },
1341
+ {
1342
+ "epoch": 1.5440582053354892,
1343
+ "grad_norm": Infinity,
1344
+ "learning_rate": 2.426569657774185e-05,
1345
+ "loss": 2.3463,
1346
+ "step": 1910
1347
+ },
1348
+ {
1349
+ "epoch": 1.5521422797089732,
1350
+ "grad_norm": Infinity,
1351
+ "learning_rate": 2.4130962004850445e-05,
1352
+ "loss": 1.63,
1353
+ "step": 1920
1354
+ },
1355
+ {
1356
+ "epoch": 1.5602263540824577,
1357
+ "grad_norm": Infinity,
1358
+ "learning_rate": 2.3996227431959044e-05,
1359
+ "loss": 2.1095,
1360
+ "step": 1930
1361
+ },
1362
+ {
1363
+ "epoch": 1.5683104284559417,
1364
+ "grad_norm": Infinity,
1365
+ "learning_rate": 2.386149285906764e-05,
1366
+ "loss": 0.9828,
1367
+ "step": 1940
1368
+ },
1369
+ {
1370
+ "epoch": 1.5763945028294262,
1371
+ "grad_norm": Infinity,
1372
+ "learning_rate": 2.3726758286176234e-05,
1373
+ "loss": 0.7091,
1374
+ "step": 1950
1375
+ },
1376
+ {
1377
+ "epoch": 1.5844785772029102,
1378
+ "grad_norm": Infinity,
1379
+ "learning_rate": 2.359202371328483e-05,
1380
+ "loss": 0.5691,
1381
+ "step": 1960
1382
+ },
1383
+ {
1384
+ "epoch": 1.5925626515763947,
1385
+ "grad_norm": Infinity,
1386
+ "learning_rate": 2.3457289140393427e-05,
1387
+ "loss": 1.5768,
1388
+ "step": 1970
1389
+ },
1390
+ {
1391
+ "epoch": 1.6006467259498787,
1392
+ "grad_norm": Infinity,
1393
+ "learning_rate": 2.3322554567502022e-05,
1394
+ "loss": 1.161,
1395
+ "step": 1980
1396
+ },
1397
+ {
1398
+ "epoch": 1.6087308003233631,
1399
+ "grad_norm": Infinity,
1400
+ "learning_rate": 2.3187819994610617e-05,
1401
+ "loss": 0.9278,
1402
+ "step": 1990
1403
+ },
1404
+ {
1405
+ "epoch": 1.6168148746968471,
1406
+ "grad_norm": Infinity,
1407
+ "learning_rate": 2.3053085421719216e-05,
1408
+ "loss": 1.0681,
1409
+ "step": 2000
1410
+ },
1411
+ {
1412
+ "epoch": 1.6248989490703316,
1413
+ "grad_norm": Infinity,
1414
+ "learning_rate": 2.291835084882781e-05,
1415
+ "loss": 2.3668,
1416
+ "step": 2010
1417
+ },
1418
+ {
1419
+ "epoch": 1.6329830234438156,
1420
+ "grad_norm": Infinity,
1421
+ "learning_rate": 2.2783616275936406e-05,
1422
+ "loss": 0.7226,
1423
+ "step": 2020
1424
+ },
1425
+ {
1426
+ "epoch": 1.6410670978172999,
1427
+ "grad_norm": Infinity,
1428
+ "learning_rate": 2.2648881703045e-05,
1429
+ "loss": 0.5279,
1430
+ "step": 2030
1431
+ },
1432
+ {
1433
+ "epoch": 1.649151172190784,
1434
+ "grad_norm": Infinity,
1435
+ "learning_rate": 2.25141471301536e-05,
1436
+ "loss": 0.7175,
1437
+ "step": 2040
1438
+ },
1439
+ {
1440
+ "epoch": 1.6572352465642683,
1441
+ "grad_norm": Infinity,
1442
+ "learning_rate": 2.2379412557262194e-05,
1443
+ "loss": 2.026,
1444
+ "step": 2050
1445
+ },
1446
+ {
1447
+ "epoch": 1.6653193209377526,
1448
+ "grad_norm": Infinity,
1449
+ "learning_rate": 2.224467798437079e-05,
1450
+ "loss": 1.204,
1451
+ "step": 2060
1452
+ },
1453
+ {
1454
+ "epoch": 1.6734033953112368,
1455
+ "grad_norm": Infinity,
1456
+ "learning_rate": 2.2109943411479387e-05,
1457
+ "loss": 2.0731,
1458
+ "step": 2070
1459
+ },
1460
+ {
1461
+ "epoch": 1.681487469684721,
1462
+ "grad_norm": Infinity,
1463
+ "learning_rate": 2.1975208838587983e-05,
1464
+ "loss": 1.9343,
1465
+ "step": 2080
1466
+ },
1467
+ {
1468
+ "epoch": 1.6895715440582053,
1469
+ "grad_norm": Infinity,
1470
+ "learning_rate": 2.1840474265696578e-05,
1471
+ "loss": 2.1806,
1472
+ "step": 2090
1473
+ },
1474
+ {
1475
+ "epoch": 1.6976556184316896,
1476
+ "grad_norm": Infinity,
1477
+ "learning_rate": 2.1705739692805176e-05,
1478
+ "loss": 2.457,
1479
+ "step": 2100
1480
+ },
1481
+ {
1482
+ "epoch": 1.7057396928051738,
1483
+ "grad_norm": Infinity,
1484
+ "learning_rate": 2.157100511991377e-05,
1485
+ "loss": 1.7964,
1486
+ "step": 2110
1487
+ },
1488
+ {
1489
+ "epoch": 1.713823767178658,
1490
+ "grad_norm": Infinity,
1491
+ "learning_rate": 2.1436270547022366e-05,
1492
+ "loss": 1.9725,
1493
+ "step": 2120
1494
+ },
1495
+ {
1496
+ "epoch": 1.7219078415521423,
1497
+ "grad_norm": Infinity,
1498
+ "learning_rate": 2.130153597413096e-05,
1499
+ "loss": 1.4176,
1500
+ "step": 2130
1501
+ },
1502
+ {
1503
+ "epoch": 1.7299919159256265,
1504
+ "grad_norm": Infinity,
1505
+ "learning_rate": 2.116680140123956e-05,
1506
+ "loss": 2.6819,
1507
+ "step": 2140
1508
+ },
1509
+ {
1510
+ "epoch": 1.7380759902991108,
1511
+ "grad_norm": Infinity,
1512
+ "learning_rate": 2.1032066828348154e-05,
1513
+ "loss": 2.2248,
1514
+ "step": 2150
1515
+ },
1516
+ {
1517
+ "epoch": 1.746160064672595,
1518
+ "grad_norm": Infinity,
1519
+ "learning_rate": 2.089733225545675e-05,
1520
+ "loss": 2.2926,
1521
+ "step": 2160
1522
+ },
1523
+ {
1524
+ "epoch": 1.7542441390460792,
1525
+ "grad_norm": Infinity,
1526
+ "learning_rate": 2.0762597682565348e-05,
1527
+ "loss": 0.6392,
1528
+ "step": 2170
1529
+ },
1530
+ {
1531
+ "epoch": 1.7623282134195635,
1532
+ "grad_norm": Infinity,
1533
+ "learning_rate": 2.0627863109673943e-05,
1534
+ "loss": 1.4321,
1535
+ "step": 2180
1536
+ },
1537
+ {
1538
+ "epoch": 1.7704122877930477,
1539
+ "grad_norm": Infinity,
1540
+ "learning_rate": 2.0493128536782538e-05,
1541
+ "loss": 1.9084,
1542
+ "step": 2190
1543
+ },
1544
+ {
1545
+ "epoch": 1.778496362166532,
1546
+ "grad_norm": Infinity,
1547
+ "learning_rate": 2.0358393963891133e-05,
1548
+ "loss": 2.2621,
1549
+ "step": 2200
1550
+ },
1551
+ {
1552
+ "epoch": 1.7865804365400162,
1553
+ "grad_norm": Infinity,
1554
+ "learning_rate": 2.022365939099973e-05,
1555
+ "loss": 1.8285,
1556
+ "step": 2210
1557
+ },
1558
+ {
1559
+ "epoch": 1.7946645109135004,
1560
+ "grad_norm": Infinity,
1561
+ "learning_rate": 2.008892481810833e-05,
1562
+ "loss": 1.5897,
1563
+ "step": 2220
1564
+ },
1565
+ {
1566
+ "epoch": 1.8027485852869847,
1567
+ "grad_norm": Infinity,
1568
+ "learning_rate": 1.9954190245216925e-05,
1569
+ "loss": 1.6952,
1570
+ "step": 2230
1571
+ },
1572
+ {
1573
+ "epoch": 1.810832659660469,
1574
+ "grad_norm": Infinity,
1575
+ "learning_rate": 1.981945567232552e-05,
1576
+ "loss": 2.6125,
1577
+ "step": 2240
1578
+ },
1579
+ {
1580
+ "epoch": 1.8189167340339532,
1581
+ "grad_norm": Infinity,
1582
+ "learning_rate": 1.9684721099434118e-05,
1583
+ "loss": 1.2341,
1584
+ "step": 2250
1585
+ },
1586
+ {
1587
+ "epoch": 1.8270008084074374,
1588
+ "grad_norm": Infinity,
1589
+ "learning_rate": 1.9549986526542713e-05,
1590
+ "loss": 1.9369,
1591
+ "step": 2260
1592
+ },
1593
+ {
1594
+ "epoch": 1.8350848827809216,
1595
+ "grad_norm": Infinity,
1596
+ "learning_rate": 1.9415251953651308e-05,
1597
+ "loss": 2.6913,
1598
+ "step": 2270
1599
+ },
1600
+ {
1601
+ "epoch": 1.8431689571544059,
1602
+ "grad_norm": Infinity,
1603
+ "learning_rate": 1.9280517380759907e-05,
1604
+ "loss": 2.0335,
1605
+ "step": 2280
1606
+ },
1607
+ {
1608
+ "epoch": 1.85125303152789,
1609
+ "grad_norm": Infinity,
1610
+ "learning_rate": 1.91457828078685e-05,
1611
+ "loss": 1.2543,
1612
+ "step": 2290
1613
+ },
1614
+ {
1615
+ "epoch": 1.8593371059013744,
1616
+ "grad_norm": Infinity,
1617
+ "learning_rate": 1.9011048234977097e-05,
1618
+ "loss": 1.6764,
1619
+ "step": 2300
1620
+ },
1621
+ {
1622
+ "epoch": 1.8674211802748584,
1623
+ "grad_norm": Infinity,
1624
+ "learning_rate": 1.887631366208569e-05,
1625
+ "loss": 1.2704,
1626
+ "step": 2310
1627
+ },
1628
+ {
1629
+ "epoch": 1.8755052546483428,
1630
+ "grad_norm": Infinity,
1631
+ "learning_rate": 1.874157908919429e-05,
1632
+ "loss": 2.1497,
1633
+ "step": 2320
1634
+ },
1635
+ {
1636
+ "epoch": 1.8835893290218269,
1637
+ "grad_norm": Infinity,
1638
+ "learning_rate": 1.8606844516302885e-05,
1639
+ "loss": 1.7158,
1640
+ "step": 2330
1641
+ },
1642
+ {
1643
+ "epoch": 1.8916734033953113,
1644
+ "grad_norm": Infinity,
1645
+ "learning_rate": 1.847210994341148e-05,
1646
+ "loss": 0.9835,
1647
+ "step": 2340
1648
+ },
1649
+ {
1650
+ "epoch": 1.8997574777687953,
1651
+ "grad_norm": Infinity,
1652
+ "learning_rate": 1.833737537052008e-05,
1653
+ "loss": 1.6897,
1654
+ "step": 2350
1655
+ },
1656
+ {
1657
+ "epoch": 1.9078415521422798,
1658
+ "grad_norm": Infinity,
1659
+ "learning_rate": 1.8202640797628673e-05,
1660
+ "loss": 1.5966,
1661
+ "step": 2360
1662
+ },
1663
+ {
1664
+ "epoch": 1.9159256265157638,
1665
+ "grad_norm": Infinity,
1666
+ "learning_rate": 1.806790622473727e-05,
1667
+ "loss": 1.3293,
1668
+ "step": 2370
1669
+ },
1670
+ {
1671
+ "epoch": 1.9240097008892483,
1672
+ "grad_norm": Infinity,
1673
+ "learning_rate": 1.7933171651845863e-05,
1674
+ "loss": 0.9033,
1675
+ "step": 2380
1676
+ },
1677
+ {
1678
+ "epoch": 1.9320937752627323,
1679
+ "grad_norm": Infinity,
1680
+ "learning_rate": 1.7798437078954462e-05,
1681
+ "loss": 1.1496,
1682
+ "step": 2390
1683
+ },
1684
+ {
1685
+ "epoch": 1.9401778496362168,
1686
+ "grad_norm": Infinity,
1687
+ "learning_rate": 1.7663702506063057e-05,
1688
+ "loss": 1.0576,
1689
+ "step": 2400
1690
+ },
1691
+ {
1692
+ "epoch": 1.9482619240097008,
1693
+ "grad_norm": Infinity,
1694
+ "learning_rate": 1.7528967933171652e-05,
1695
+ "loss": 2.219,
1696
+ "step": 2410
1697
+ },
1698
+ {
1699
+ "epoch": 1.9563459983831852,
1700
+ "grad_norm": Infinity,
1701
+ "learning_rate": 1.739423336028025e-05,
1702
+ "loss": 0.8811,
1703
+ "step": 2420
1704
+ },
1705
+ {
1706
+ "epoch": 1.9644300727566693,
1707
+ "grad_norm": Infinity,
1708
+ "learning_rate": 1.7259498787388845e-05,
1709
+ "loss": 1.5159,
1710
+ "step": 2430
1711
+ },
1712
+ {
1713
+ "epoch": 1.9725141471301537,
1714
+ "grad_norm": Infinity,
1715
+ "learning_rate": 1.712476421449744e-05,
1716
+ "loss": 1.5736,
1717
+ "step": 2440
1718
+ },
1719
+ {
1720
+ "epoch": 1.9805982215036377,
1721
+ "grad_norm": Infinity,
1722
+ "learning_rate": 1.6990029641606035e-05,
1723
+ "loss": 2.0976,
1724
+ "step": 2450
1725
+ },
1726
+ {
1727
+ "epoch": 1.9886822958771222,
1728
+ "grad_norm": Infinity,
1729
+ "learning_rate": 1.6855295068714634e-05,
1730
+ "loss": 2.2363,
1731
+ "step": 2460
1732
+ },
1733
+ {
1734
+ "epoch": 1.9967663702506062,
1735
+ "grad_norm": Infinity,
1736
+ "learning_rate": 1.672056049582323e-05,
1737
+ "loss": 2.5238,
1738
+ "step": 2470
1739
+ },
1740
+ {
1741
+ "epoch": 2.0048504446240907,
1742
+ "grad_norm": Infinity,
1743
+ "learning_rate": 1.6585825922931824e-05,
1744
+ "loss": 0.9174,
1745
+ "step": 2480
1746
+ },
1747
+ {
1748
+ "epoch": 2.0129345189975747,
1749
+ "grad_norm": Infinity,
1750
+ "learning_rate": 1.6451091350040422e-05,
1751
+ "loss": 1.5876,
1752
+ "step": 2490
1753
+ },
1754
+ {
1755
+ "epoch": 2.021018593371059,
1756
+ "grad_norm": Infinity,
1757
+ "learning_rate": 1.6316356777149017e-05,
1758
+ "loss": 1.129,
1759
+ "step": 2500
1760
+ },
1761
+ {
1762
+ "epoch": 2.029102667744543,
1763
+ "grad_norm": Infinity,
1764
+ "learning_rate": 1.6181622204257612e-05,
1765
+ "loss": 1.6202,
1766
+ "step": 2510
1767
+ },
1768
+ {
1769
+ "epoch": 2.0371867421180276,
1770
+ "grad_norm": Infinity,
1771
+ "learning_rate": 1.6046887631366207e-05,
1772
+ "loss": 0.9087,
1773
+ "step": 2520
1774
+ },
1775
+ {
1776
+ "epoch": 2.0452708164915117,
1777
+ "grad_norm": Infinity,
1778
+ "learning_rate": 1.5912153058474806e-05,
1779
+ "loss": 2.0087,
1780
+ "step": 2530
1781
+ },
1782
+ {
1783
+ "epoch": 2.053354890864996,
1784
+ "grad_norm": Infinity,
1785
+ "learning_rate": 1.57774184855834e-05,
1786
+ "loss": 2.1463,
1787
+ "step": 2540
1788
+ },
1789
+ {
1790
+ "epoch": 2.06143896523848,
1791
+ "grad_norm": Infinity,
1792
+ "learning_rate": 1.5642683912691996e-05,
1793
+ "loss": 1.7217,
1794
+ "step": 2550
1795
+ },
1796
+ {
1797
+ "epoch": 2.0695230396119646,
1798
+ "grad_norm": Infinity,
1799
+ "learning_rate": 1.5507949339800594e-05,
1800
+ "loss": 0.7802,
1801
+ "step": 2560
1802
+ },
1803
+ {
1804
+ "epoch": 2.0776071139854486,
1805
+ "grad_norm": Infinity,
1806
+ "learning_rate": 1.537321476690919e-05,
1807
+ "loss": 2.4857,
1808
+ "step": 2570
1809
+ },
1810
+ {
1811
+ "epoch": 2.085691188358933,
1812
+ "grad_norm": Infinity,
1813
+ "learning_rate": 1.5238480194017784e-05,
1814
+ "loss": 1.5868,
1815
+ "step": 2580
1816
+ },
1817
+ {
1818
+ "epoch": 2.093775262732417,
1819
+ "grad_norm": Infinity,
1820
+ "learning_rate": 1.510374562112638e-05,
1821
+ "loss": 2.8292,
1822
+ "step": 2590
1823
+ },
1824
+ {
1825
+ "epoch": 2.1018593371059016,
1826
+ "grad_norm": Infinity,
1827
+ "learning_rate": 1.4969011048234976e-05,
1828
+ "loss": 1.4174,
1829
+ "step": 2600
1830
+ },
1831
+ {
1832
+ "epoch": 2.1099434114793856,
1833
+ "grad_norm": Infinity,
1834
+ "learning_rate": 1.4834276475343573e-05,
1835
+ "loss": 1.4931,
1836
+ "step": 2610
1837
+ },
1838
+ {
1839
+ "epoch": 2.11802748585287,
1840
+ "grad_norm": Infinity,
1841
+ "learning_rate": 1.469954190245217e-05,
1842
+ "loss": 1.1888,
1843
+ "step": 2620
1844
+ },
1845
+ {
1846
+ "epoch": 2.126111560226354,
1847
+ "grad_norm": Infinity,
1848
+ "learning_rate": 1.4564807329560768e-05,
1849
+ "loss": 2.5423,
1850
+ "step": 2630
1851
+ },
1852
+ {
1853
+ "epoch": 2.1341956345998385,
1854
+ "grad_norm": Infinity,
1855
+ "learning_rate": 1.4430072756669363e-05,
1856
+ "loss": 1.0222,
1857
+ "step": 2640
1858
+ },
1859
+ {
1860
+ "epoch": 2.1422797089733225,
1861
+ "grad_norm": Infinity,
1862
+ "learning_rate": 1.429533818377796e-05,
1863
+ "loss": 1.2646,
1864
+ "step": 2650
1865
+ },
1866
+ {
1867
+ "epoch": 2.1503637833468066,
1868
+ "grad_norm": Infinity,
1869
+ "learning_rate": 1.4160603610886556e-05,
1870
+ "loss": 0.8661,
1871
+ "step": 2660
1872
+ },
1873
+ {
1874
+ "epoch": 2.158447857720291,
1875
+ "grad_norm": Infinity,
1876
+ "learning_rate": 1.4025869037995151e-05,
1877
+ "loss": 1.0685,
1878
+ "step": 2670
1879
+ },
1880
+ {
1881
+ "epoch": 2.1665319320937755,
1882
+ "grad_norm": Infinity,
1883
+ "learning_rate": 1.3891134465103748e-05,
1884
+ "loss": 1.6561,
1885
+ "step": 2680
1886
+ },
1887
+ {
1888
+ "epoch": 2.1746160064672595,
1889
+ "grad_norm": Infinity,
1890
+ "learning_rate": 1.3756399892212343e-05,
1891
+ "loss": 1.4664,
1892
+ "step": 2690
1893
+ },
1894
+ {
1895
+ "epoch": 2.1827000808407435,
1896
+ "grad_norm": Infinity,
1897
+ "learning_rate": 1.362166531932094e-05,
1898
+ "loss": 1.8332,
1899
+ "step": 2700
1900
+ },
1901
+ {
1902
+ "epoch": 2.190784155214228,
1903
+ "grad_norm": Infinity,
1904
+ "learning_rate": 1.3486930746429535e-05,
1905
+ "loss": 1.2506,
1906
+ "step": 2710
1907
+ },
1908
+ {
1909
+ "epoch": 2.1988682295877124,
1910
+ "grad_norm": Infinity,
1911
+ "learning_rate": 1.3352196173538131e-05,
1912
+ "loss": 1.1132,
1913
+ "step": 2720
1914
+ },
1915
+ {
1916
+ "epoch": 2.2069523039611965,
1917
+ "grad_norm": Infinity,
1918
+ "learning_rate": 1.3217461600646728e-05,
1919
+ "loss": 0.8307,
1920
+ "step": 2730
1921
+ },
1922
+ {
1923
+ "epoch": 2.2150363783346805,
1924
+ "grad_norm": Infinity,
1925
+ "learning_rate": 1.3082727027755323e-05,
1926
+ "loss": 1.706,
1927
+ "step": 2740
1928
+ },
1929
+ {
1930
+ "epoch": 2.223120452708165,
1931
+ "grad_norm": Infinity,
1932
+ "learning_rate": 1.294799245486392e-05,
1933
+ "loss": 1.2033,
1934
+ "step": 2750
1935
+ },
1936
+ {
1937
+ "epoch": 2.231204527081649,
1938
+ "grad_norm": Infinity,
1939
+ "learning_rate": 1.2813257881972515e-05,
1940
+ "loss": 1.5921,
1941
+ "step": 2760
1942
+ },
1943
+ {
1944
+ "epoch": 2.2392886014551334,
1945
+ "grad_norm": Infinity,
1946
+ "learning_rate": 1.2678523309081111e-05,
1947
+ "loss": 1.1893,
1948
+ "step": 2770
1949
+ },
1950
+ {
1951
+ "epoch": 2.2473726758286174,
1952
+ "grad_norm": Infinity,
1953
+ "learning_rate": 1.2543788736189706e-05,
1954
+ "loss": 1.9335,
1955
+ "step": 2780
1956
+ },
1957
+ {
1958
+ "epoch": 2.255456750202102,
1959
+ "grad_norm": Infinity,
1960
+ "learning_rate": 1.2409054163298303e-05,
1961
+ "loss": 1.5802,
1962
+ "step": 2790
1963
+ },
1964
+ {
1965
+ "epoch": 2.263540824575586,
1966
+ "grad_norm": Infinity,
1967
+ "learning_rate": 1.22743195904069e-05,
1968
+ "loss": 2.0087,
1969
+ "step": 2800
1970
+ },
1971
+ {
1972
+ "epoch": 2.2716248989490704,
1973
+ "grad_norm": Infinity,
1974
+ "learning_rate": 1.2139585017515495e-05,
1975
+ "loss": 1.1383,
1976
+ "step": 2810
1977
+ },
1978
+ {
1979
+ "epoch": 2.2797089733225544,
1980
+ "grad_norm": Infinity,
1981
+ "learning_rate": 1.2004850444624092e-05,
1982
+ "loss": 1.3281,
1983
+ "step": 2820
1984
+ },
1985
+ {
1986
+ "epoch": 2.287793047696039,
1987
+ "grad_norm": Infinity,
1988
+ "learning_rate": 1.1870115871732687e-05,
1989
+ "loss": 1.0895,
1990
+ "step": 2830
1991
+ },
1992
+ {
1993
+ "epoch": 2.295877122069523,
1994
+ "grad_norm": Infinity,
1995
+ "learning_rate": 1.1735381298841283e-05,
1996
+ "loss": 1.0182,
1997
+ "step": 2840
1998
+ },
1999
+ {
2000
+ "epoch": 2.3039611964430073,
2001
+ "grad_norm": Infinity,
2002
+ "learning_rate": 1.1600646725949878e-05,
2003
+ "loss": 1.6568,
2004
+ "step": 2850
2005
+ },
2006
+ {
2007
+ "epoch": 2.3120452708164914,
2008
+ "grad_norm": Infinity,
2009
+ "learning_rate": 1.1465912153058475e-05,
2010
+ "loss": 1.6142,
2011
+ "step": 2860
2012
+ },
2013
+ {
2014
+ "epoch": 2.320129345189976,
2015
+ "grad_norm": Infinity,
2016
+ "learning_rate": 1.1331177580167072e-05,
2017
+ "loss": 1.9218,
2018
+ "step": 2870
2019
+ },
2020
+ {
2021
+ "epoch": 2.32821341956346,
2022
+ "grad_norm": Infinity,
2023
+ "learning_rate": 1.1196443007275667e-05,
2024
+ "loss": 1.6749,
2025
+ "step": 2880
2026
+ },
2027
+ {
2028
+ "epoch": 2.3362974939369443,
2029
+ "grad_norm": Infinity,
2030
+ "learning_rate": 1.1061708434384263e-05,
2031
+ "loss": 0.6671,
2032
+ "step": 2890
2033
+ },
2034
+ {
2035
+ "epoch": 2.3443815683104283,
2036
+ "grad_norm": Infinity,
2037
+ "learning_rate": 1.0926973861492859e-05,
2038
+ "loss": 1.8723,
2039
+ "step": 2900
2040
+ },
2041
+ {
2042
+ "epoch": 2.352465642683913,
2043
+ "grad_norm": Infinity,
2044
+ "learning_rate": 1.0792239288601455e-05,
2045
+ "loss": 1.8936,
2046
+ "step": 2910
2047
+ },
2048
+ {
2049
+ "epoch": 2.360549717057397,
2050
+ "grad_norm": Infinity,
2051
+ "learning_rate": 1.065750471571005e-05,
2052
+ "loss": 1.7514,
2053
+ "step": 2920
2054
+ },
2055
+ {
2056
+ "epoch": 2.3686337914308813,
2057
+ "grad_norm": Infinity,
2058
+ "learning_rate": 1.0522770142818649e-05,
2059
+ "loss": 1.6109,
2060
+ "step": 2930
2061
+ },
2062
+ {
2063
+ "epoch": 2.3767178658043653,
2064
+ "grad_norm": Infinity,
2065
+ "learning_rate": 1.0388035569927244e-05,
2066
+ "loss": 2.3036,
2067
+ "step": 2940
2068
+ },
2069
+ {
2070
+ "epoch": 2.3848019401778497,
2071
+ "grad_norm": Infinity,
2072
+ "learning_rate": 1.025330099703584e-05,
2073
+ "loss": 1.6592,
2074
+ "step": 2950
2075
+ },
2076
+ {
2077
+ "epoch": 2.3928860145513338,
2078
+ "grad_norm": Infinity,
2079
+ "learning_rate": 1.0118566424144437e-05,
2080
+ "loss": 1.64,
2081
+ "step": 2960
2082
+ },
2083
+ {
2084
+ "epoch": 2.4009700889248182,
2085
+ "grad_norm": Infinity,
2086
+ "learning_rate": 9.983831851253032e-06,
2087
+ "loss": 2.0912,
2088
+ "step": 2970
2089
+ },
2090
+ {
2091
+ "epoch": 2.4090541632983022,
2092
+ "grad_norm": Infinity,
2093
+ "learning_rate": 9.849097278361629e-06,
2094
+ "loss": 1.4023,
2095
+ "step": 2980
2096
+ },
2097
+ {
2098
+ "epoch": 2.4171382376717867,
2099
+ "grad_norm": Infinity,
2100
+ "learning_rate": 9.714362705470224e-06,
2101
+ "loss": 1.8342,
2102
+ "step": 2990
2103
+ },
2104
+ {
2105
+ "epoch": 2.4252223120452707,
2106
+ "grad_norm": Infinity,
2107
+ "learning_rate": 9.57962813257882e-06,
2108
+ "loss": 0.9314,
2109
+ "step": 3000
2110
+ },
2111
+ {
2112
+ "epoch": 2.433306386418755,
2113
+ "grad_norm": Infinity,
2114
+ "learning_rate": 9.444893559687416e-06,
2115
+ "loss": 1.271,
2116
+ "step": 3010
2117
+ },
2118
+ {
2119
+ "epoch": 2.441390460792239,
2120
+ "grad_norm": Infinity,
2121
+ "learning_rate": 9.310158986796012e-06,
2122
+ "loss": 2.358,
2123
+ "step": 3020
2124
+ },
2125
+ {
2126
+ "epoch": 2.4494745351657237,
2127
+ "grad_norm": Infinity,
2128
+ "learning_rate": 9.175424413904609e-06,
2129
+ "loss": 1.9627,
2130
+ "step": 3030
2131
+ },
2132
+ {
2133
+ "epoch": 2.4575586095392077,
2134
+ "grad_norm": Infinity,
2135
+ "learning_rate": 9.040689841013204e-06,
2136
+ "loss": 1.1173,
2137
+ "step": 3040
2138
+ },
2139
+ {
2140
+ "epoch": 2.465642683912692,
2141
+ "grad_norm": Infinity,
2142
+ "learning_rate": 8.9059552681218e-06,
2143
+ "loss": 0.91,
2144
+ "step": 3050
2145
+ },
2146
+ {
2147
+ "epoch": 2.473726758286176,
2148
+ "grad_norm": Infinity,
2149
+ "learning_rate": 8.771220695230396e-06,
2150
+ "loss": 0.8115,
2151
+ "step": 3060
2152
+ },
2153
+ {
2154
+ "epoch": 2.4818108326596606,
2155
+ "grad_norm": Infinity,
2156
+ "learning_rate": 8.636486122338992e-06,
2157
+ "loss": 1.3157,
2158
+ "step": 3070
2159
+ },
2160
+ {
2161
+ "epoch": 2.4898949070331446,
2162
+ "grad_norm": Infinity,
2163
+ "learning_rate": 8.501751549447589e-06,
2164
+ "loss": 2.2141,
2165
+ "step": 3080
2166
+ },
2167
+ {
2168
+ "epoch": 2.497978981406629,
2169
+ "grad_norm": Infinity,
2170
+ "learning_rate": 8.367016976556184e-06,
2171
+ "loss": 1.5275,
2172
+ "step": 3090
2173
+ },
2174
+ {
2175
+ "epoch": 2.506063055780113,
2176
+ "grad_norm": Infinity,
2177
+ "learning_rate": 8.23228240366478e-06,
2178
+ "loss": 1.8859,
2179
+ "step": 3100
2180
+ },
2181
+ {
2182
+ "epoch": 2.5141471301535976,
2183
+ "grad_norm": Infinity,
2184
+ "learning_rate": 8.097547830773376e-06,
2185
+ "loss": 1.6131,
2186
+ "step": 3110
2187
+ },
2188
+ {
2189
+ "epoch": 2.5222312045270816,
2190
+ "grad_norm": Infinity,
2191
+ "learning_rate": 7.962813257881973e-06,
2192
+ "loss": 1.4654,
2193
+ "step": 3120
2194
+ },
2195
+ {
2196
+ "epoch": 2.5303152789005656,
2197
+ "grad_norm": Infinity,
2198
+ "learning_rate": 7.82807868499057e-06,
2199
+ "loss": 1.4129,
2200
+ "step": 3130
2201
+ },
2202
+ {
2203
+ "epoch": 2.53839935327405,
2204
+ "grad_norm": Infinity,
2205
+ "learning_rate": 7.693344112099166e-06,
2206
+ "loss": 1.2493,
2207
+ "step": 3140
2208
+ },
2209
+ {
2210
+ "epoch": 2.5464834276475345,
2211
+ "grad_norm": Infinity,
2212
+ "learning_rate": 7.558609539207762e-06,
2213
+ "loss": 1.6047,
2214
+ "step": 3150
2215
+ },
2216
+ {
2217
+ "epoch": 2.5545675020210186,
2218
+ "grad_norm": Infinity,
2219
+ "learning_rate": 7.423874966316358e-06,
2220
+ "loss": 0.6597,
2221
+ "step": 3160
2222
+ },
2223
+ {
2224
+ "epoch": 2.5626515763945026,
2225
+ "grad_norm": Infinity,
2226
+ "learning_rate": 7.2891403934249536e-06,
2227
+ "loss": 1.8984,
2228
+ "step": 3170
2229
+ },
2230
+ {
2231
+ "epoch": 2.570735650767987,
2232
+ "grad_norm": Infinity,
2233
+ "learning_rate": 7.1544058205335494e-06,
2234
+ "loss": 1.9384,
2235
+ "step": 3180
2236
+ },
2237
+ {
2238
+ "epoch": 2.5788197251414715,
2239
+ "grad_norm": Infinity,
2240
+ "learning_rate": 7.019671247642145e-06,
2241
+ "loss": 2.2221,
2242
+ "step": 3190
2243
+ },
2244
+ {
2245
+ "epoch": 2.5869037995149555,
2246
+ "grad_norm": Infinity,
2247
+ "learning_rate": 6.884936674750741e-06,
2248
+ "loss": 1.1601,
2249
+ "step": 3200
2250
+ },
2251
+ {
2252
+ "epoch": 2.5949878738884395,
2253
+ "grad_norm": Infinity,
2254
+ "learning_rate": 6.750202101859338e-06,
2255
+ "loss": 2.0688,
2256
+ "step": 3210
2257
+ },
2258
+ {
2259
+ "epoch": 2.603071948261924,
2260
+ "grad_norm": Infinity,
2261
+ "learning_rate": 6.615467528967934e-06,
2262
+ "loss": 1.5725,
2263
+ "step": 3220
2264
+ },
2265
+ {
2266
+ "epoch": 2.6111560226354085,
2267
+ "grad_norm": Infinity,
2268
+ "learning_rate": 6.48073295607653e-06,
2269
+ "loss": 1.9509,
2270
+ "step": 3230
2271
+ },
2272
+ {
2273
+ "epoch": 2.6192400970088925,
2274
+ "grad_norm": Infinity,
2275
+ "learning_rate": 6.3459983831851255e-06,
2276
+ "loss": 1.8586,
2277
+ "step": 3240
2278
+ },
2279
+ {
2280
+ "epoch": 2.6273241713823765,
2281
+ "grad_norm": Infinity,
2282
+ "learning_rate": 6.211263810293721e-06,
2283
+ "loss": 1.516,
2284
+ "step": 3250
2285
+ },
2286
+ {
2287
+ "epoch": 2.635408245755861,
2288
+ "grad_norm": Infinity,
2289
+ "learning_rate": 6.076529237402317e-06,
2290
+ "loss": 1.5061,
2291
+ "step": 3260
2292
+ },
2293
+ {
2294
+ "epoch": 2.6434923201293454,
2295
+ "grad_norm": Infinity,
2296
+ "learning_rate": 5.941794664510914e-06,
2297
+ "loss": 0.9186,
2298
+ "step": 3270
2299
+ },
2300
+ {
2301
+ "epoch": 2.6515763945028294,
2302
+ "grad_norm": Infinity,
2303
+ "learning_rate": 5.80706009161951e-06,
2304
+ "loss": 1.5769,
2305
+ "step": 3280
2306
+ },
2307
+ {
2308
+ "epoch": 2.6596604688763135,
2309
+ "grad_norm": Infinity,
2310
+ "learning_rate": 5.6723255187281065e-06,
2311
+ "loss": 2.253,
2312
+ "step": 3290
2313
+ },
2314
+ {
2315
+ "epoch": 2.667744543249798,
2316
+ "grad_norm": Infinity,
2317
+ "learning_rate": 5.537590945836702e-06,
2318
+ "loss": 0.7681,
2319
+ "step": 3300
2320
+ },
2321
+ {
2322
+ "epoch": 2.6758286176232824,
2323
+ "grad_norm": Infinity,
2324
+ "learning_rate": 5.402856372945298e-06,
2325
+ "loss": 0.967,
2326
+ "step": 3310
2327
+ },
2328
+ {
2329
+ "epoch": 2.6839126919967664,
2330
+ "grad_norm": Infinity,
2331
+ "learning_rate": 5.268121800053894e-06,
2332
+ "loss": 2.1412,
2333
+ "step": 3320
2334
+ },
2335
+ {
2336
+ "epoch": 2.6919967663702504,
2337
+ "grad_norm": Infinity,
2338
+ "learning_rate": 5.13338722716249e-06,
2339
+ "loss": 3.0335,
2340
+ "step": 3330
2341
+ },
2342
+ {
2343
+ "epoch": 2.700080840743735,
2344
+ "grad_norm": Infinity,
2345
+ "learning_rate": 4.998652654271086e-06,
2346
+ "loss": 1.7116,
2347
+ "step": 3340
2348
+ },
2349
+ {
2350
+ "epoch": 2.7081649151172194,
2351
+ "grad_norm": Infinity,
2352
+ "learning_rate": 4.8639180813796825e-06,
2353
+ "loss": 1.5722,
2354
+ "step": 3350
2355
+ },
2356
+ {
2357
+ "epoch": 2.7162489894907034,
2358
+ "grad_norm": Infinity,
2359
+ "learning_rate": 4.729183508488278e-06,
2360
+ "loss": 0.9447,
2361
+ "step": 3360
2362
+ },
2363
+ {
2364
+ "epoch": 2.7243330638641874,
2365
+ "grad_norm": Infinity,
2366
+ "learning_rate": 4.594448935596874e-06,
2367
+ "loss": 1.5505,
2368
+ "step": 3370
2369
+ },
2370
+ {
2371
+ "epoch": 2.732417138237672,
2372
+ "grad_norm": Infinity,
2373
+ "learning_rate": 4.459714362705471e-06,
2374
+ "loss": 1.4774,
2375
+ "step": 3380
2376
+ },
2377
+ {
2378
+ "epoch": 2.740501212611156,
2379
+ "grad_norm": Infinity,
2380
+ "learning_rate": 4.324979789814067e-06,
2381
+ "loss": 0.9662,
2382
+ "step": 3390
2383
+ },
2384
+ {
2385
+ "epoch": 2.7485852869846403,
2386
+ "grad_norm": Infinity,
2387
+ "learning_rate": 4.190245216922663e-06,
2388
+ "loss": 1.3972,
2389
+ "step": 3400
2390
+ },
2391
+ {
2392
+ "epoch": 2.7566693613581243,
2393
+ "grad_norm": Infinity,
2394
+ "learning_rate": 4.0555106440312585e-06,
2395
+ "loss": 1.9129,
2396
+ "step": 3410
2397
+ },
2398
+ {
2399
+ "epoch": 2.764753435731609,
2400
+ "grad_norm": Infinity,
2401
+ "learning_rate": 3.920776071139854e-06,
2402
+ "loss": 1.3831,
2403
+ "step": 3420
2404
+ },
2405
+ {
2406
+ "epoch": 2.772837510105093,
2407
+ "grad_norm": Infinity,
2408
+ "learning_rate": 3.7860414982484507e-06,
2409
+ "loss": 1.2399,
2410
+ "step": 3430
2411
+ },
2412
+ {
2413
+ "epoch": 2.7809215844785773,
2414
+ "grad_norm": Infinity,
2415
+ "learning_rate": 3.6513069253570465e-06,
2416
+ "loss": 2.1903,
2417
+ "step": 3440
2418
+ },
2419
+ {
2420
+ "epoch": 2.7890056588520613,
2421
+ "grad_norm": Infinity,
2422
+ "learning_rate": 3.516572352465643e-06,
2423
+ "loss": 2.2974,
2424
+ "step": 3450
2425
+ },
2426
+ {
2427
+ "epoch": 2.7970897332255458,
2428
+ "grad_norm": Infinity,
2429
+ "learning_rate": 3.3818377795742387e-06,
2430
+ "loss": 0.904,
2431
+ "step": 3460
2432
+ },
2433
+ {
2434
+ "epoch": 2.80517380759903,
2435
+ "grad_norm": Infinity,
2436
+ "learning_rate": 3.2471032066828345e-06,
2437
+ "loss": 2.1944,
2438
+ "step": 3470
2439
+ },
2440
+ {
2441
+ "epoch": 2.8132578819725143,
2442
+ "grad_norm": Infinity,
2443
+ "learning_rate": 3.112368633791431e-06,
2444
+ "loss": 0.5356,
2445
+ "step": 3480
2446
+ },
2447
+ {
2448
+ "epoch": 2.8213419563459983,
2449
+ "grad_norm": Infinity,
2450
+ "learning_rate": 2.977634060900027e-06,
2451
+ "loss": 1.952,
2452
+ "step": 3490
2453
+ },
2454
+ {
2455
+ "epoch": 2.8294260307194827,
2456
+ "grad_norm": Infinity,
2457
+ "learning_rate": 2.842899488008623e-06,
2458
+ "loss": 0.8518,
2459
+ "step": 3500
2460
+ }
2461
+ ],
2462
+ "logging_steps": 10,
2463
+ "max_steps": 3711,
2464
+ "num_input_tokens_seen": 0,
2465
+ "num_train_epochs": 3,
2466
+ "save_steps": 500,
2467
+ "stateful_callbacks": {
2468
+ "TrainerControl": {
2469
+ "args": {
2470
+ "should_epoch_stop": false,
2471
+ "should_evaluate": false,
2472
+ "should_log": false,
2473
+ "should_save": true,
2474
+ "should_training_stop": false
2475
+ },
2476
+ "attributes": {}
2477
+ }
2478
+ },
2479
+ "total_flos": 4635626569728000.0,
2480
+ "train_batch_size": 1,
2481
+ "trial_name": null,
2482
+ "trial_params": null
2483
+ }
norah_lora/checkpoint-3500/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9f7af70a1c91c1728aececa3729ab0591b5edd689612a906672255dbec45ed35
3
+ size 5304
norah_lora/checkpoint-3711/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: Visdom9/Norah
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.14.0
norah_lora/checkpoint-3711/adapter_config.json ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "Visdom9/Norah",
5
+ "bias": "none",
6
+ "eva_config": null,
7
+ "exclude_modules": null,
8
+ "fan_in_fan_out": false,
9
+ "inference_mode": true,
10
+ "init_lora_weights": true,
11
+ "layer_replication": null,
12
+ "layers_pattern": null,
13
+ "layers_to_transform": null,
14
+ "loftq_config": {},
15
+ "lora_alpha": 32,
16
+ "lora_bias": false,
17
+ "lora_dropout": 0.1,
18
+ "megatron_config": null,
19
+ "megatron_core": "megatron.core",
20
+ "modules_to_save": null,
21
+ "peft_type": "LORA",
22
+ "r": 8,
23
+ "rank_pattern": {},
24
+ "revision": null,
25
+ "target_modules": [
26
+ "v_proj",
27
+ "q_proj"
28
+ ],
29
+ "task_type": "CAUSAL_LM",
30
+ "use_dora": false,
31
+ "use_rslora": false
32
+ }
norah_lora/checkpoint-3711/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6d59cff2a6bd8bd4549db675d631da3cdb3d83feba06da5fefc2970ca60dd38c
3
+ size 1284192
norah_lora/checkpoint-3711/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b502946018db5f952bdf926c2b2311bc874507d1378725550a2a3b2e5a2b1bdd
3
+ size 2595258
norah_lora/checkpoint-3711/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f6c6895b530907b08bbabfbbbd7bc9909b14d8b6d23c5d37900c2359ecd83b5a
3
+ size 13990
norah_lora/checkpoint-3711/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5be38479cc6d4d7b05065d5ca01d483e46f63525134f3c6696acddfb309dee56
3
+ size 1064
norah_lora/checkpoint-3711/trainer_state.json ADDED
@@ -0,0 +1,2630 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 3.0,
5
+ "eval_steps": 500,
6
+ "global_step": 3711,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.008084074373484237,
13
+ "grad_norm": Infinity,
14
+ "learning_rate": 4.98652654271086e-05,
15
+ "loss": 1.3186,
16
+ "step": 10
17
+ },
18
+ {
19
+ "epoch": 0.016168148746968473,
20
+ "grad_norm": Infinity,
21
+ "learning_rate": 4.973053085421719e-05,
22
+ "loss": 1.6363,
23
+ "step": 20
24
+ },
25
+ {
26
+ "epoch": 0.024252223120452707,
27
+ "grad_norm": Infinity,
28
+ "learning_rate": 4.959579628132579e-05,
29
+ "loss": 1.8313,
30
+ "step": 30
31
+ },
32
+ {
33
+ "epoch": 0.03233629749393695,
34
+ "grad_norm": Infinity,
35
+ "learning_rate": 4.946106170843439e-05,
36
+ "loss": 1.646,
37
+ "step": 40
38
+ },
39
+ {
40
+ "epoch": 0.04042037186742118,
41
+ "grad_norm": Infinity,
42
+ "learning_rate": 4.932632713554298e-05,
43
+ "loss": 1.4233,
44
+ "step": 50
45
+ },
46
+ {
47
+ "epoch": 0.04850444624090541,
48
+ "grad_norm": Infinity,
49
+ "learning_rate": 4.919159256265158e-05,
50
+ "loss": 1.8705,
51
+ "step": 60
52
+ },
53
+ {
54
+ "epoch": 0.056588520614389654,
55
+ "grad_norm": Infinity,
56
+ "learning_rate": 4.905685798976018e-05,
57
+ "loss": 1.7552,
58
+ "step": 70
59
+ },
60
+ {
61
+ "epoch": 0.0646725949878739,
62
+ "grad_norm": Infinity,
63
+ "learning_rate": 4.892212341686877e-05,
64
+ "loss": 1.1921,
65
+ "step": 80
66
+ },
67
+ {
68
+ "epoch": 0.07275666936135812,
69
+ "grad_norm": Infinity,
70
+ "learning_rate": 4.878738884397737e-05,
71
+ "loss": 1.4613,
72
+ "step": 90
73
+ },
74
+ {
75
+ "epoch": 0.08084074373484236,
76
+ "grad_norm": Infinity,
77
+ "learning_rate": 4.865265427108596e-05,
78
+ "loss": 0.6314,
79
+ "step": 100
80
+ },
81
+ {
82
+ "epoch": 0.0889248181083266,
83
+ "grad_norm": Infinity,
84
+ "learning_rate": 4.851791969819456e-05,
85
+ "loss": 1.8646,
86
+ "step": 110
87
+ },
88
+ {
89
+ "epoch": 0.09700889248181083,
90
+ "grad_norm": Infinity,
91
+ "learning_rate": 4.8383185125303156e-05,
92
+ "loss": 1.4315,
93
+ "step": 120
94
+ },
95
+ {
96
+ "epoch": 0.10509296685529507,
97
+ "grad_norm": Infinity,
98
+ "learning_rate": 4.824845055241175e-05,
99
+ "loss": 2.6826,
100
+ "step": 130
101
+ },
102
+ {
103
+ "epoch": 0.11317704122877931,
104
+ "grad_norm": Infinity,
105
+ "learning_rate": 4.8113715979520346e-05,
106
+ "loss": 2.2289,
107
+ "step": 140
108
+ },
109
+ {
110
+ "epoch": 0.12126111560226355,
111
+ "grad_norm": Infinity,
112
+ "learning_rate": 4.7978981406628945e-05,
113
+ "loss": 1.6823,
114
+ "step": 150
115
+ },
116
+ {
117
+ "epoch": 0.1293451899757478,
118
+ "grad_norm": Infinity,
119
+ "learning_rate": 4.7844246833737536e-05,
120
+ "loss": 0.7194,
121
+ "step": 160
122
+ },
123
+ {
124
+ "epoch": 0.137429264349232,
125
+ "grad_norm": Infinity,
126
+ "learning_rate": 4.7709512260846135e-05,
127
+ "loss": 2.28,
128
+ "step": 170
129
+ },
130
+ {
131
+ "epoch": 0.14551333872271624,
132
+ "grad_norm": Infinity,
133
+ "learning_rate": 4.757477768795473e-05,
134
+ "loss": 1.156,
135
+ "step": 180
136
+ },
137
+ {
138
+ "epoch": 0.15359741309620048,
139
+ "grad_norm": Infinity,
140
+ "learning_rate": 4.7440043115063325e-05,
141
+ "loss": 2.0865,
142
+ "step": 190
143
+ },
144
+ {
145
+ "epoch": 0.16168148746968472,
146
+ "grad_norm": Infinity,
147
+ "learning_rate": 4.730530854217192e-05,
148
+ "loss": 1.7647,
149
+ "step": 200
150
+ },
151
+ {
152
+ "epoch": 0.16976556184316896,
153
+ "grad_norm": Infinity,
154
+ "learning_rate": 4.717057396928052e-05,
155
+ "loss": 2.3384,
156
+ "step": 210
157
+ },
158
+ {
159
+ "epoch": 0.1778496362166532,
160
+ "grad_norm": Infinity,
161
+ "learning_rate": 4.703583939638911e-05,
162
+ "loss": 2.5532,
163
+ "step": 220
164
+ },
165
+ {
166
+ "epoch": 0.18593371059013744,
167
+ "grad_norm": Infinity,
168
+ "learning_rate": 4.690110482349771e-05,
169
+ "loss": 1.016,
170
+ "step": 230
171
+ },
172
+ {
173
+ "epoch": 0.19401778496362165,
174
+ "grad_norm": Infinity,
175
+ "learning_rate": 4.67663702506063e-05,
176
+ "loss": 2.1508,
177
+ "step": 240
178
+ },
179
+ {
180
+ "epoch": 0.2021018593371059,
181
+ "grad_norm": Infinity,
182
+ "learning_rate": 4.66316356777149e-05,
183
+ "loss": 1.267,
184
+ "step": 250
185
+ },
186
+ {
187
+ "epoch": 0.21018593371059013,
188
+ "grad_norm": Infinity,
189
+ "learning_rate": 4.64969011048235e-05,
190
+ "loss": 1.28,
191
+ "step": 260
192
+ },
193
+ {
194
+ "epoch": 0.21827000808407437,
195
+ "grad_norm": Infinity,
196
+ "learning_rate": 4.636216653193209e-05,
197
+ "loss": 1.6061,
198
+ "step": 270
199
+ },
200
+ {
201
+ "epoch": 0.22635408245755861,
202
+ "grad_norm": Infinity,
203
+ "learning_rate": 4.622743195904069e-05,
204
+ "loss": 0.7908,
205
+ "step": 280
206
+ },
207
+ {
208
+ "epoch": 0.23443815683104285,
209
+ "grad_norm": Infinity,
210
+ "learning_rate": 4.609269738614929e-05,
211
+ "loss": 1.8026,
212
+ "step": 290
213
+ },
214
+ {
215
+ "epoch": 0.2425222312045271,
216
+ "grad_norm": Infinity,
217
+ "learning_rate": 4.595796281325788e-05,
218
+ "loss": 1.2974,
219
+ "step": 300
220
+ },
221
+ {
222
+ "epoch": 0.25060630557801133,
223
+ "grad_norm": Infinity,
224
+ "learning_rate": 4.582322824036648e-05,
225
+ "loss": 1.885,
226
+ "step": 310
227
+ },
228
+ {
229
+ "epoch": 0.2586903799514956,
230
+ "grad_norm": Infinity,
231
+ "learning_rate": 4.568849366747508e-05,
232
+ "loss": 1.2212,
233
+ "step": 320
234
+ },
235
+ {
236
+ "epoch": 0.2667744543249798,
237
+ "grad_norm": Infinity,
238
+ "learning_rate": 4.555375909458367e-05,
239
+ "loss": 1.5874,
240
+ "step": 330
241
+ },
242
+ {
243
+ "epoch": 0.274858528698464,
244
+ "grad_norm": Infinity,
245
+ "learning_rate": 4.541902452169227e-05,
246
+ "loss": 0.8497,
247
+ "step": 340
248
+ },
249
+ {
250
+ "epoch": 0.28294260307194824,
251
+ "grad_norm": Infinity,
252
+ "learning_rate": 4.5284289948800865e-05,
253
+ "loss": 1.1971,
254
+ "step": 350
255
+ },
256
+ {
257
+ "epoch": 0.2910266774454325,
258
+ "grad_norm": Infinity,
259
+ "learning_rate": 4.514955537590946e-05,
260
+ "loss": 2.5525,
261
+ "step": 360
262
+ },
263
+ {
264
+ "epoch": 0.2991107518189167,
265
+ "grad_norm": Infinity,
266
+ "learning_rate": 4.5014820803018055e-05,
267
+ "loss": 0.5229,
268
+ "step": 370
269
+ },
270
+ {
271
+ "epoch": 0.30719482619240096,
272
+ "grad_norm": Infinity,
273
+ "learning_rate": 4.488008623012665e-05,
274
+ "loss": 1.9758,
275
+ "step": 380
276
+ },
277
+ {
278
+ "epoch": 0.3152789005658852,
279
+ "grad_norm": Infinity,
280
+ "learning_rate": 4.4745351657235245e-05,
281
+ "loss": 1.5789,
282
+ "step": 390
283
+ },
284
+ {
285
+ "epoch": 0.32336297493936944,
286
+ "grad_norm": Infinity,
287
+ "learning_rate": 4.4610617084343844e-05,
288
+ "loss": 2.2642,
289
+ "step": 400
290
+ },
291
+ {
292
+ "epoch": 0.3314470493128537,
293
+ "grad_norm": Infinity,
294
+ "learning_rate": 4.447588251145244e-05,
295
+ "loss": 2.1261,
296
+ "step": 410
297
+ },
298
+ {
299
+ "epoch": 0.3395311236863379,
300
+ "grad_norm": Infinity,
301
+ "learning_rate": 4.434114793856104e-05,
302
+ "loss": 2.9391,
303
+ "step": 420
304
+ },
305
+ {
306
+ "epoch": 0.34761519805982216,
307
+ "grad_norm": Infinity,
308
+ "learning_rate": 4.420641336566964e-05,
309
+ "loss": 1.7748,
310
+ "step": 430
311
+ },
312
+ {
313
+ "epoch": 0.3556992724333064,
314
+ "grad_norm": Infinity,
315
+ "learning_rate": 4.407167879277823e-05,
316
+ "loss": 1.3519,
317
+ "step": 440
318
+ },
319
+ {
320
+ "epoch": 0.36378334680679064,
321
+ "grad_norm": Infinity,
322
+ "learning_rate": 4.393694421988683e-05,
323
+ "loss": 1.6652,
324
+ "step": 450
325
+ },
326
+ {
327
+ "epoch": 0.3718674211802749,
328
+ "grad_norm": Infinity,
329
+ "learning_rate": 4.380220964699542e-05,
330
+ "loss": 1.7532,
331
+ "step": 460
332
+ },
333
+ {
334
+ "epoch": 0.3799514955537591,
335
+ "grad_norm": Infinity,
336
+ "learning_rate": 4.366747507410402e-05,
337
+ "loss": 1.8121,
338
+ "step": 470
339
+ },
340
+ {
341
+ "epoch": 0.3880355699272433,
342
+ "grad_norm": Infinity,
343
+ "learning_rate": 4.353274050121262e-05,
344
+ "loss": 1.0565,
345
+ "step": 480
346
+ },
347
+ {
348
+ "epoch": 0.39611964430072755,
349
+ "grad_norm": Infinity,
350
+ "learning_rate": 4.339800592832121e-05,
351
+ "loss": 2.5515,
352
+ "step": 490
353
+ },
354
+ {
355
+ "epoch": 0.4042037186742118,
356
+ "grad_norm": Infinity,
357
+ "learning_rate": 4.326327135542981e-05,
358
+ "loss": 1.8491,
359
+ "step": 500
360
+ },
361
+ {
362
+ "epoch": 0.412287793047696,
363
+ "grad_norm": Infinity,
364
+ "learning_rate": 4.3128536782538406e-05,
365
+ "loss": 1.3268,
366
+ "step": 510
367
+ },
368
+ {
369
+ "epoch": 0.42037186742118027,
370
+ "grad_norm": Infinity,
371
+ "learning_rate": 4.2993802209647e-05,
372
+ "loss": 2.3801,
373
+ "step": 520
374
+ },
375
+ {
376
+ "epoch": 0.4284559417946645,
377
+ "grad_norm": Infinity,
378
+ "learning_rate": 4.2859067636755596e-05,
379
+ "loss": 2.3338,
380
+ "step": 530
381
+ },
382
+ {
383
+ "epoch": 0.43654001616814875,
384
+ "grad_norm": Infinity,
385
+ "learning_rate": 4.2724333063864194e-05,
386
+ "loss": 1.5153,
387
+ "step": 540
388
+ },
389
+ {
390
+ "epoch": 0.444624090541633,
391
+ "grad_norm": Infinity,
392
+ "learning_rate": 4.2589598490972786e-05,
393
+ "loss": 0.8897,
394
+ "step": 550
395
+ },
396
+ {
397
+ "epoch": 0.45270816491511723,
398
+ "grad_norm": Infinity,
399
+ "learning_rate": 4.2454863918081384e-05,
400
+ "loss": 0.8557,
401
+ "step": 560
402
+ },
403
+ {
404
+ "epoch": 0.46079223928860147,
405
+ "grad_norm": Infinity,
406
+ "learning_rate": 4.232012934518998e-05,
407
+ "loss": 1.021,
408
+ "step": 570
409
+ },
410
+ {
411
+ "epoch": 0.4688763136620857,
412
+ "grad_norm": Infinity,
413
+ "learning_rate": 4.2185394772298574e-05,
414
+ "loss": 1.3295,
415
+ "step": 580
416
+ },
417
+ {
418
+ "epoch": 0.47696038803556995,
419
+ "grad_norm": Infinity,
420
+ "learning_rate": 4.205066019940717e-05,
421
+ "loss": 2.0716,
422
+ "step": 590
423
+ },
424
+ {
425
+ "epoch": 0.4850444624090542,
426
+ "grad_norm": Infinity,
427
+ "learning_rate": 4.1915925626515764e-05,
428
+ "loss": 2.5046,
429
+ "step": 600
430
+ },
431
+ {
432
+ "epoch": 0.4931285367825384,
433
+ "grad_norm": Infinity,
434
+ "learning_rate": 4.178119105362436e-05,
435
+ "loss": 1.4814,
436
+ "step": 610
437
+ },
438
+ {
439
+ "epoch": 0.5012126111560227,
440
+ "grad_norm": Infinity,
441
+ "learning_rate": 4.164645648073296e-05,
442
+ "loss": 1.5643,
443
+ "step": 620
444
+ },
445
+ {
446
+ "epoch": 0.5092966855295069,
447
+ "grad_norm": Infinity,
448
+ "learning_rate": 4.151172190784155e-05,
449
+ "loss": 1.4721,
450
+ "step": 630
451
+ },
452
+ {
453
+ "epoch": 0.5173807599029911,
454
+ "grad_norm": Infinity,
455
+ "learning_rate": 4.137698733495015e-05,
456
+ "loss": 2.1584,
457
+ "step": 640
458
+ },
459
+ {
460
+ "epoch": 0.5254648342764754,
461
+ "grad_norm": Infinity,
462
+ "learning_rate": 4.124225276205875e-05,
463
+ "loss": 0.9858,
464
+ "step": 650
465
+ },
466
+ {
467
+ "epoch": 0.5335489086499596,
468
+ "grad_norm": Infinity,
469
+ "learning_rate": 4.110751818916734e-05,
470
+ "loss": 2.2872,
471
+ "step": 660
472
+ },
473
+ {
474
+ "epoch": 0.5416329830234439,
475
+ "grad_norm": Infinity,
476
+ "learning_rate": 4.097278361627594e-05,
477
+ "loss": 1.8746,
478
+ "step": 670
479
+ },
480
+ {
481
+ "epoch": 0.549717057396928,
482
+ "grad_norm": Infinity,
483
+ "learning_rate": 4.083804904338454e-05,
484
+ "loss": 1.5985,
485
+ "step": 680
486
+ },
487
+ {
488
+ "epoch": 0.5578011317704122,
489
+ "grad_norm": Infinity,
490
+ "learning_rate": 4.070331447049313e-05,
491
+ "loss": 1.4411,
492
+ "step": 690
493
+ },
494
+ {
495
+ "epoch": 0.5658852061438965,
496
+ "grad_norm": Infinity,
497
+ "learning_rate": 4.056857989760173e-05,
498
+ "loss": 1.6405,
499
+ "step": 700
500
+ },
501
+ {
502
+ "epoch": 0.5739692805173807,
503
+ "grad_norm": Infinity,
504
+ "learning_rate": 4.0433845324710326e-05,
505
+ "loss": 0.9719,
506
+ "step": 710
507
+ },
508
+ {
509
+ "epoch": 0.582053354890865,
510
+ "grad_norm": Infinity,
511
+ "learning_rate": 4.029911075181892e-05,
512
+ "loss": 0.8405,
513
+ "step": 720
514
+ },
515
+ {
516
+ "epoch": 0.5901374292643492,
517
+ "grad_norm": Infinity,
518
+ "learning_rate": 4.0164376178927516e-05,
519
+ "loss": 0.5547,
520
+ "step": 730
521
+ },
522
+ {
523
+ "epoch": 0.5982215036378334,
524
+ "grad_norm": Infinity,
525
+ "learning_rate": 4.002964160603611e-05,
526
+ "loss": 1.0534,
527
+ "step": 740
528
+ },
529
+ {
530
+ "epoch": 0.6063055780113177,
531
+ "grad_norm": Infinity,
532
+ "learning_rate": 3.9894907033144707e-05,
533
+ "loss": 0.827,
534
+ "step": 750
535
+ },
536
+ {
537
+ "epoch": 0.6143896523848019,
538
+ "grad_norm": Infinity,
539
+ "learning_rate": 3.9760172460253305e-05,
540
+ "loss": 2.7736,
541
+ "step": 760
542
+ },
543
+ {
544
+ "epoch": 0.6224737267582862,
545
+ "grad_norm": Infinity,
546
+ "learning_rate": 3.9625437887361897e-05,
547
+ "loss": 1.637,
548
+ "step": 770
549
+ },
550
+ {
551
+ "epoch": 0.6305578011317704,
552
+ "grad_norm": Infinity,
553
+ "learning_rate": 3.9490703314470495e-05,
554
+ "loss": 2.0057,
555
+ "step": 780
556
+ },
557
+ {
558
+ "epoch": 0.6386418755052546,
559
+ "grad_norm": Infinity,
560
+ "learning_rate": 3.935596874157909e-05,
561
+ "loss": 1.1342,
562
+ "step": 790
563
+ },
564
+ {
565
+ "epoch": 0.6467259498787389,
566
+ "grad_norm": Infinity,
567
+ "learning_rate": 3.9221234168687685e-05,
568
+ "loss": 0.9694,
569
+ "step": 800
570
+ },
571
+ {
572
+ "epoch": 0.6548100242522231,
573
+ "grad_norm": Infinity,
574
+ "learning_rate": 3.908649959579628e-05,
575
+ "loss": 2.2358,
576
+ "step": 810
577
+ },
578
+ {
579
+ "epoch": 0.6628940986257074,
580
+ "grad_norm": Infinity,
581
+ "learning_rate": 3.895176502290488e-05,
582
+ "loss": 0.7282,
583
+ "step": 820
584
+ },
585
+ {
586
+ "epoch": 0.6709781729991916,
587
+ "grad_norm": Infinity,
588
+ "learning_rate": 3.8817030450013473e-05,
589
+ "loss": 1.0698,
590
+ "step": 830
591
+ },
592
+ {
593
+ "epoch": 0.6790622473726758,
594
+ "grad_norm": Infinity,
595
+ "learning_rate": 3.868229587712207e-05,
596
+ "loss": 1.3923,
597
+ "step": 840
598
+ },
599
+ {
600
+ "epoch": 0.6871463217461601,
601
+ "grad_norm": Infinity,
602
+ "learning_rate": 3.854756130423067e-05,
603
+ "loss": 0.8056,
604
+ "step": 850
605
+ },
606
+ {
607
+ "epoch": 0.6952303961196443,
608
+ "grad_norm": Infinity,
609
+ "learning_rate": 3.841282673133926e-05,
610
+ "loss": 1.6625,
611
+ "step": 860
612
+ },
613
+ {
614
+ "epoch": 0.7033144704931286,
615
+ "grad_norm": Infinity,
616
+ "learning_rate": 3.827809215844786e-05,
617
+ "loss": 1.2065,
618
+ "step": 870
619
+ },
620
+ {
621
+ "epoch": 0.7113985448666128,
622
+ "grad_norm": Infinity,
623
+ "learning_rate": 3.814335758555645e-05,
624
+ "loss": 1.1378,
625
+ "step": 880
626
+ },
627
+ {
628
+ "epoch": 0.719482619240097,
629
+ "grad_norm": Infinity,
630
+ "learning_rate": 3.800862301266505e-05,
631
+ "loss": 1.4192,
632
+ "step": 890
633
+ },
634
+ {
635
+ "epoch": 0.7275666936135813,
636
+ "grad_norm": Infinity,
637
+ "learning_rate": 3.787388843977365e-05,
638
+ "loss": 1.2827,
639
+ "step": 900
640
+ },
641
+ {
642
+ "epoch": 0.7356507679870655,
643
+ "grad_norm": Infinity,
644
+ "learning_rate": 3.773915386688224e-05,
645
+ "loss": 0.5413,
646
+ "step": 910
647
+ },
648
+ {
649
+ "epoch": 0.7437348423605498,
650
+ "grad_norm": Infinity,
651
+ "learning_rate": 3.760441929399084e-05,
652
+ "loss": 1.524,
653
+ "step": 920
654
+ },
655
+ {
656
+ "epoch": 0.751818916734034,
657
+ "grad_norm": Infinity,
658
+ "learning_rate": 3.746968472109944e-05,
659
+ "loss": 2.3918,
660
+ "step": 930
661
+ },
662
+ {
663
+ "epoch": 0.7599029911075182,
664
+ "grad_norm": Infinity,
665
+ "learning_rate": 3.733495014820803e-05,
666
+ "loss": 1.4762,
667
+ "step": 940
668
+ },
669
+ {
670
+ "epoch": 0.7679870654810024,
671
+ "grad_norm": Infinity,
672
+ "learning_rate": 3.720021557531663e-05,
673
+ "loss": 1.2758,
674
+ "step": 950
675
+ },
676
+ {
677
+ "epoch": 0.7760711398544866,
678
+ "grad_norm": Infinity,
679
+ "learning_rate": 3.7065481002425226e-05,
680
+ "loss": 1.2247,
681
+ "step": 960
682
+ },
683
+ {
684
+ "epoch": 0.7841552142279709,
685
+ "grad_norm": Infinity,
686
+ "learning_rate": 3.693074642953382e-05,
687
+ "loss": 1.3217,
688
+ "step": 970
689
+ },
690
+ {
691
+ "epoch": 0.7922392886014551,
692
+ "grad_norm": Infinity,
693
+ "learning_rate": 3.6796011856642416e-05,
694
+ "loss": 1.0781,
695
+ "step": 980
696
+ },
697
+ {
698
+ "epoch": 0.8003233629749393,
699
+ "grad_norm": Infinity,
700
+ "learning_rate": 3.6661277283751014e-05,
701
+ "loss": 1.1996,
702
+ "step": 990
703
+ },
704
+ {
705
+ "epoch": 0.8084074373484236,
706
+ "grad_norm": Infinity,
707
+ "learning_rate": 3.6526542710859606e-05,
708
+ "loss": 1.8774,
709
+ "step": 1000
710
+ },
711
+ {
712
+ "epoch": 0.8164915117219078,
713
+ "grad_norm": Infinity,
714
+ "learning_rate": 3.6391808137968204e-05,
715
+ "loss": 0.4993,
716
+ "step": 1010
717
+ },
718
+ {
719
+ "epoch": 0.824575586095392,
720
+ "grad_norm": Infinity,
721
+ "learning_rate": 3.6257073565076796e-05,
722
+ "loss": 1.1835,
723
+ "step": 1020
724
+ },
725
+ {
726
+ "epoch": 0.8326596604688763,
727
+ "grad_norm": Infinity,
728
+ "learning_rate": 3.6122338992185394e-05,
729
+ "loss": 1.6,
730
+ "step": 1030
731
+ },
732
+ {
733
+ "epoch": 0.8407437348423605,
734
+ "grad_norm": Infinity,
735
+ "learning_rate": 3.598760441929399e-05,
736
+ "loss": 2.5379,
737
+ "step": 1040
738
+ },
739
+ {
740
+ "epoch": 0.8488278092158448,
741
+ "grad_norm": Infinity,
742
+ "learning_rate": 3.5852869846402584e-05,
743
+ "loss": 1.0088,
744
+ "step": 1050
745
+ },
746
+ {
747
+ "epoch": 0.856911883589329,
748
+ "grad_norm": Infinity,
749
+ "learning_rate": 3.571813527351118e-05,
750
+ "loss": 2.2007,
751
+ "step": 1060
752
+ },
753
+ {
754
+ "epoch": 0.8649959579628133,
755
+ "grad_norm": Infinity,
756
+ "learning_rate": 3.558340070061978e-05,
757
+ "loss": 1.3587,
758
+ "step": 1070
759
+ },
760
+ {
761
+ "epoch": 0.8730800323362975,
762
+ "grad_norm": Infinity,
763
+ "learning_rate": 3.544866612772837e-05,
764
+ "loss": 3.0178,
765
+ "step": 1080
766
+ },
767
+ {
768
+ "epoch": 0.8811641067097817,
769
+ "grad_norm": Infinity,
770
+ "learning_rate": 3.531393155483697e-05,
771
+ "loss": 1.7664,
772
+ "step": 1090
773
+ },
774
+ {
775
+ "epoch": 0.889248181083266,
776
+ "grad_norm": Infinity,
777
+ "learning_rate": 3.517919698194557e-05,
778
+ "loss": 0.8585,
779
+ "step": 1100
780
+ },
781
+ {
782
+ "epoch": 0.8973322554567502,
783
+ "grad_norm": Infinity,
784
+ "learning_rate": 3.504446240905416e-05,
785
+ "loss": 1.5722,
786
+ "step": 1110
787
+ },
788
+ {
789
+ "epoch": 0.9054163298302345,
790
+ "grad_norm": Infinity,
791
+ "learning_rate": 3.490972783616276e-05,
792
+ "loss": 2.0158,
793
+ "step": 1120
794
+ },
795
+ {
796
+ "epoch": 0.9135004042037187,
797
+ "grad_norm": Infinity,
798
+ "learning_rate": 3.477499326327136e-05,
799
+ "loss": 1.8439,
800
+ "step": 1130
801
+ },
802
+ {
803
+ "epoch": 0.9215844785772029,
804
+ "grad_norm": Infinity,
805
+ "learning_rate": 3.464025869037995e-05,
806
+ "loss": 1.7193,
807
+ "step": 1140
808
+ },
809
+ {
810
+ "epoch": 0.9296685529506872,
811
+ "grad_norm": Infinity,
812
+ "learning_rate": 3.450552411748855e-05,
813
+ "loss": 0.8563,
814
+ "step": 1150
815
+ },
816
+ {
817
+ "epoch": 0.9377526273241714,
818
+ "grad_norm": Infinity,
819
+ "learning_rate": 3.4370789544597146e-05,
820
+ "loss": 1.2554,
821
+ "step": 1160
822
+ },
823
+ {
824
+ "epoch": 0.9458367016976557,
825
+ "grad_norm": Infinity,
826
+ "learning_rate": 3.423605497170574e-05,
827
+ "loss": 1.2612,
828
+ "step": 1170
829
+ },
830
+ {
831
+ "epoch": 0.9539207760711399,
832
+ "grad_norm": Infinity,
833
+ "learning_rate": 3.4101320398814336e-05,
834
+ "loss": 0.6833,
835
+ "step": 1180
836
+ },
837
+ {
838
+ "epoch": 0.9620048504446241,
839
+ "grad_norm": Infinity,
840
+ "learning_rate": 3.396658582592293e-05,
841
+ "loss": 0.7645,
842
+ "step": 1190
843
+ },
844
+ {
845
+ "epoch": 0.9700889248181084,
846
+ "grad_norm": Infinity,
847
+ "learning_rate": 3.3831851253031526e-05,
848
+ "loss": 1.7546,
849
+ "step": 1200
850
+ },
851
+ {
852
+ "epoch": 0.9781729991915926,
853
+ "grad_norm": Infinity,
854
+ "learning_rate": 3.3697116680140125e-05,
855
+ "loss": 2.0247,
856
+ "step": 1210
857
+ },
858
+ {
859
+ "epoch": 0.9862570735650767,
860
+ "grad_norm": Infinity,
861
+ "learning_rate": 3.356238210724872e-05,
862
+ "loss": 0.8708,
863
+ "step": 1220
864
+ },
865
+ {
866
+ "epoch": 0.994341147938561,
867
+ "grad_norm": Infinity,
868
+ "learning_rate": 3.342764753435732e-05,
869
+ "loss": 2.1135,
870
+ "step": 1230
871
+ },
872
+ {
873
+ "epoch": 1.0024252223120453,
874
+ "grad_norm": Infinity,
875
+ "learning_rate": 3.329291296146591e-05,
876
+ "loss": 1.73,
877
+ "step": 1240
878
+ },
879
+ {
880
+ "epoch": 1.0105092966855296,
881
+ "grad_norm": Infinity,
882
+ "learning_rate": 3.315817838857451e-05,
883
+ "loss": 1.5269,
884
+ "step": 1250
885
+ },
886
+ {
887
+ "epoch": 1.0185933710590138,
888
+ "grad_norm": Infinity,
889
+ "learning_rate": 3.302344381568311e-05,
890
+ "loss": 1.3657,
891
+ "step": 1260
892
+ },
893
+ {
894
+ "epoch": 1.026677445432498,
895
+ "grad_norm": Infinity,
896
+ "learning_rate": 3.28887092427917e-05,
897
+ "loss": 1.3771,
898
+ "step": 1270
899
+ },
900
+ {
901
+ "epoch": 1.0347615198059823,
902
+ "grad_norm": Infinity,
903
+ "learning_rate": 3.27539746699003e-05,
904
+ "loss": 0.9131,
905
+ "step": 1280
906
+ },
907
+ {
908
+ "epoch": 1.0428455941794665,
909
+ "grad_norm": Infinity,
910
+ "learning_rate": 3.26192400970089e-05,
911
+ "loss": 0.844,
912
+ "step": 1290
913
+ },
914
+ {
915
+ "epoch": 1.0509296685529508,
916
+ "grad_norm": Infinity,
917
+ "learning_rate": 3.248450552411749e-05,
918
+ "loss": 1.4511,
919
+ "step": 1300
920
+ },
921
+ {
922
+ "epoch": 1.059013742926435,
923
+ "grad_norm": Infinity,
924
+ "learning_rate": 3.234977095122609e-05,
925
+ "loss": 2.0453,
926
+ "step": 1310
927
+ },
928
+ {
929
+ "epoch": 1.0670978172999193,
930
+ "grad_norm": Infinity,
931
+ "learning_rate": 3.221503637833469e-05,
932
+ "loss": 1.4035,
933
+ "step": 1320
934
+ },
935
+ {
936
+ "epoch": 1.0751818916734033,
937
+ "grad_norm": Infinity,
938
+ "learning_rate": 3.208030180544328e-05,
939
+ "loss": 1.5244,
940
+ "step": 1330
941
+ },
942
+ {
943
+ "epoch": 1.0832659660468877,
944
+ "grad_norm": Infinity,
945
+ "learning_rate": 3.194556723255188e-05,
946
+ "loss": 0.8892,
947
+ "step": 1340
948
+ },
949
+ {
950
+ "epoch": 1.0913500404203718,
951
+ "grad_norm": Infinity,
952
+ "learning_rate": 3.1810832659660475e-05,
953
+ "loss": 1.6417,
954
+ "step": 1350
955
+ },
956
+ {
957
+ "epoch": 1.0994341147938562,
958
+ "grad_norm": Infinity,
959
+ "learning_rate": 3.167609808676907e-05,
960
+ "loss": 2.1219,
961
+ "step": 1360
962
+ },
963
+ {
964
+ "epoch": 1.1075181891673402,
965
+ "grad_norm": Infinity,
966
+ "learning_rate": 3.1541363513877665e-05,
967
+ "loss": 2.4549,
968
+ "step": 1370
969
+ },
970
+ {
971
+ "epoch": 1.1156022635408245,
972
+ "grad_norm": Infinity,
973
+ "learning_rate": 3.140662894098626e-05,
974
+ "loss": 1.1852,
975
+ "step": 1380
976
+ },
977
+ {
978
+ "epoch": 1.1236863379143087,
979
+ "grad_norm": Infinity,
980
+ "learning_rate": 3.1271894368094855e-05,
981
+ "loss": 2.5192,
982
+ "step": 1390
983
+ },
984
+ {
985
+ "epoch": 1.131770412287793,
986
+ "grad_norm": Infinity,
987
+ "learning_rate": 3.1137159795203454e-05,
988
+ "loss": 1.0584,
989
+ "step": 1400
990
+ },
991
+ {
992
+ "epoch": 1.1398544866612772,
993
+ "grad_norm": Infinity,
994
+ "learning_rate": 3.1002425222312045e-05,
995
+ "loss": 1.9475,
996
+ "step": 1410
997
+ },
998
+ {
999
+ "epoch": 1.1479385610347614,
1000
+ "grad_norm": Infinity,
1001
+ "learning_rate": 3.0867690649420644e-05,
1002
+ "loss": 1.3349,
1003
+ "step": 1420
1004
+ },
1005
+ {
1006
+ "epoch": 1.1560226354082457,
1007
+ "grad_norm": Infinity,
1008
+ "learning_rate": 3.073295607652924e-05,
1009
+ "loss": 2.005,
1010
+ "step": 1430
1011
+ },
1012
+ {
1013
+ "epoch": 1.16410670978173,
1014
+ "grad_norm": Infinity,
1015
+ "learning_rate": 3.0598221503637834e-05,
1016
+ "loss": 0.8468,
1017
+ "step": 1440
1018
+ },
1019
+ {
1020
+ "epoch": 1.1721907841552142,
1021
+ "grad_norm": Infinity,
1022
+ "learning_rate": 3.0463486930746432e-05,
1023
+ "loss": 1.3994,
1024
+ "step": 1450
1025
+ },
1026
+ {
1027
+ "epoch": 1.1802748585286984,
1028
+ "grad_norm": Infinity,
1029
+ "learning_rate": 3.0328752357855027e-05,
1030
+ "loss": 0.5119,
1031
+ "step": 1460
1032
+ },
1033
+ {
1034
+ "epoch": 1.1883589329021826,
1035
+ "grad_norm": Infinity,
1036
+ "learning_rate": 3.0194017784963626e-05,
1037
+ "loss": 0.7779,
1038
+ "step": 1470
1039
+ },
1040
+ {
1041
+ "epoch": 1.1964430072756669,
1042
+ "grad_norm": Infinity,
1043
+ "learning_rate": 3.005928321207222e-05,
1044
+ "loss": 1.7018,
1045
+ "step": 1480
1046
+ },
1047
+ {
1048
+ "epoch": 1.2045270816491511,
1049
+ "grad_norm": Infinity,
1050
+ "learning_rate": 2.9924548639180816e-05,
1051
+ "loss": 1.3685,
1052
+ "step": 1490
1053
+ },
1054
+ {
1055
+ "epoch": 1.2126111560226354,
1056
+ "grad_norm": Infinity,
1057
+ "learning_rate": 2.978981406628941e-05,
1058
+ "loss": 1.361,
1059
+ "step": 1500
1060
+ },
1061
+ {
1062
+ "epoch": 1.2206952303961196,
1063
+ "grad_norm": Infinity,
1064
+ "learning_rate": 2.965507949339801e-05,
1065
+ "loss": 1.5077,
1066
+ "step": 1510
1067
+ },
1068
+ {
1069
+ "epoch": 1.2287793047696038,
1070
+ "grad_norm": Infinity,
1071
+ "learning_rate": 2.9520344920506604e-05,
1072
+ "loss": 1.0513,
1073
+ "step": 1520
1074
+ },
1075
+ {
1076
+ "epoch": 1.236863379143088,
1077
+ "grad_norm": Infinity,
1078
+ "learning_rate": 2.93856103476152e-05,
1079
+ "loss": 1.6926,
1080
+ "step": 1530
1081
+ },
1082
+ {
1083
+ "epoch": 1.2449474535165723,
1084
+ "grad_norm": Infinity,
1085
+ "learning_rate": 2.9250875774723797e-05,
1086
+ "loss": 1.3084,
1087
+ "step": 1540
1088
+ },
1089
+ {
1090
+ "epoch": 1.2530315278900566,
1091
+ "grad_norm": Infinity,
1092
+ "learning_rate": 2.9116141201832392e-05,
1093
+ "loss": 1.8298,
1094
+ "step": 1550
1095
+ },
1096
+ {
1097
+ "epoch": 1.2611156022635408,
1098
+ "grad_norm": Infinity,
1099
+ "learning_rate": 2.8981406628940987e-05,
1100
+ "loss": 0.9793,
1101
+ "step": 1560
1102
+ },
1103
+ {
1104
+ "epoch": 1.269199676637025,
1105
+ "grad_norm": Infinity,
1106
+ "learning_rate": 2.8846672056049582e-05,
1107
+ "loss": 1.4149,
1108
+ "step": 1570
1109
+ },
1110
+ {
1111
+ "epoch": 1.2772837510105093,
1112
+ "grad_norm": Infinity,
1113
+ "learning_rate": 2.871193748315818e-05,
1114
+ "loss": 0.9485,
1115
+ "step": 1580
1116
+ },
1117
+ {
1118
+ "epoch": 1.2853678253839935,
1119
+ "grad_norm": Infinity,
1120
+ "learning_rate": 2.8577202910266776e-05,
1121
+ "loss": 1.6182,
1122
+ "step": 1590
1123
+ },
1124
+ {
1125
+ "epoch": 1.2934518997574778,
1126
+ "grad_norm": Infinity,
1127
+ "learning_rate": 2.844246833737537e-05,
1128
+ "loss": 0.9473,
1129
+ "step": 1600
1130
+ },
1131
+ {
1132
+ "epoch": 1.301535974130962,
1133
+ "grad_norm": Infinity,
1134
+ "learning_rate": 2.830773376448397e-05,
1135
+ "loss": 1.8231,
1136
+ "step": 1610
1137
+ },
1138
+ {
1139
+ "epoch": 1.3096200485044462,
1140
+ "grad_norm": Infinity,
1141
+ "learning_rate": 2.8172999191592564e-05,
1142
+ "loss": 1.687,
1143
+ "step": 1620
1144
+ },
1145
+ {
1146
+ "epoch": 1.3177041228779305,
1147
+ "grad_norm": Infinity,
1148
+ "learning_rate": 2.803826461870116e-05,
1149
+ "loss": 1.0405,
1150
+ "step": 1630
1151
+ },
1152
+ {
1153
+ "epoch": 1.3257881972514147,
1154
+ "grad_norm": Infinity,
1155
+ "learning_rate": 2.7903530045809754e-05,
1156
+ "loss": 1.2729,
1157
+ "step": 1640
1158
+ },
1159
+ {
1160
+ "epoch": 1.333872271624899,
1161
+ "grad_norm": Infinity,
1162
+ "learning_rate": 2.7768795472918353e-05,
1163
+ "loss": 1.7429,
1164
+ "step": 1650
1165
+ },
1166
+ {
1167
+ "epoch": 1.3419563459983832,
1168
+ "grad_norm": Infinity,
1169
+ "learning_rate": 2.7634060900026948e-05,
1170
+ "loss": 1.1652,
1171
+ "step": 1660
1172
+ },
1173
+ {
1174
+ "epoch": 1.3500404203718674,
1175
+ "grad_norm": Infinity,
1176
+ "learning_rate": 2.7499326327135543e-05,
1177
+ "loss": 1.6927,
1178
+ "step": 1670
1179
+ },
1180
+ {
1181
+ "epoch": 1.3581244947453517,
1182
+ "grad_norm": Infinity,
1183
+ "learning_rate": 2.736459175424414e-05,
1184
+ "loss": 1.1215,
1185
+ "step": 1680
1186
+ },
1187
+ {
1188
+ "epoch": 1.366208569118836,
1189
+ "grad_norm": Infinity,
1190
+ "learning_rate": 2.7229857181352736e-05,
1191
+ "loss": 1.0629,
1192
+ "step": 1690
1193
+ },
1194
+ {
1195
+ "epoch": 1.3742926434923202,
1196
+ "grad_norm": Infinity,
1197
+ "learning_rate": 2.709512260846133e-05,
1198
+ "loss": 1.0104,
1199
+ "step": 1700
1200
+ },
1201
+ {
1202
+ "epoch": 1.3823767178658044,
1203
+ "grad_norm": Infinity,
1204
+ "learning_rate": 2.6960388035569926e-05,
1205
+ "loss": 1.4327,
1206
+ "step": 1710
1207
+ },
1208
+ {
1209
+ "epoch": 1.3904607922392886,
1210
+ "grad_norm": Infinity,
1211
+ "learning_rate": 2.6825653462678525e-05,
1212
+ "loss": 1.0857,
1213
+ "step": 1720
1214
+ },
1215
+ {
1216
+ "epoch": 1.3985448666127729,
1217
+ "grad_norm": Infinity,
1218
+ "learning_rate": 2.669091888978712e-05,
1219
+ "loss": 1.7623,
1220
+ "step": 1730
1221
+ },
1222
+ {
1223
+ "epoch": 1.4066289409862571,
1224
+ "grad_norm": Infinity,
1225
+ "learning_rate": 2.6556184316895715e-05,
1226
+ "loss": 1.4973,
1227
+ "step": 1740
1228
+ },
1229
+ {
1230
+ "epoch": 1.4147130153597414,
1231
+ "grad_norm": Infinity,
1232
+ "learning_rate": 2.6421449744004313e-05,
1233
+ "loss": 1.313,
1234
+ "step": 1750
1235
+ },
1236
+ {
1237
+ "epoch": 1.4227970897332256,
1238
+ "grad_norm": Infinity,
1239
+ "learning_rate": 2.6286715171112908e-05,
1240
+ "loss": 1.1965,
1241
+ "step": 1760
1242
+ },
1243
+ {
1244
+ "epoch": 1.4308811641067098,
1245
+ "grad_norm": Infinity,
1246
+ "learning_rate": 2.6151980598221503e-05,
1247
+ "loss": 1.432,
1248
+ "step": 1770
1249
+ },
1250
+ {
1251
+ "epoch": 1.438965238480194,
1252
+ "grad_norm": Infinity,
1253
+ "learning_rate": 2.6017246025330098e-05,
1254
+ "loss": 1.3331,
1255
+ "step": 1780
1256
+ },
1257
+ {
1258
+ "epoch": 1.4470493128536783,
1259
+ "grad_norm": Infinity,
1260
+ "learning_rate": 2.5882511452438697e-05,
1261
+ "loss": 1.2561,
1262
+ "step": 1790
1263
+ },
1264
+ {
1265
+ "epoch": 1.4551333872271626,
1266
+ "grad_norm": Infinity,
1267
+ "learning_rate": 2.574777687954729e-05,
1268
+ "loss": 1.5896,
1269
+ "step": 1800
1270
+ },
1271
+ {
1272
+ "epoch": 1.4632174616006468,
1273
+ "grad_norm": Infinity,
1274
+ "learning_rate": 2.5613042306655887e-05,
1275
+ "loss": 2.9014,
1276
+ "step": 1810
1277
+ },
1278
+ {
1279
+ "epoch": 1.4713015359741308,
1280
+ "grad_norm": Infinity,
1281
+ "learning_rate": 2.5478307733764485e-05,
1282
+ "loss": 1.5244,
1283
+ "step": 1820
1284
+ },
1285
+ {
1286
+ "epoch": 1.4793856103476153,
1287
+ "grad_norm": Infinity,
1288
+ "learning_rate": 2.534357316087308e-05,
1289
+ "loss": 1.0577,
1290
+ "step": 1830
1291
+ },
1292
+ {
1293
+ "epoch": 1.4874696847210993,
1294
+ "grad_norm": Infinity,
1295
+ "learning_rate": 2.5208838587981675e-05,
1296
+ "loss": 1.2323,
1297
+ "step": 1840
1298
+ },
1299
+ {
1300
+ "epoch": 1.4955537590945838,
1301
+ "grad_norm": Infinity,
1302
+ "learning_rate": 2.5074104015090273e-05,
1303
+ "loss": 2.4222,
1304
+ "step": 1850
1305
+ },
1306
+ {
1307
+ "epoch": 1.5036378334680678,
1308
+ "grad_norm": Infinity,
1309
+ "learning_rate": 2.4939369442198872e-05,
1310
+ "loss": 1.9402,
1311
+ "step": 1860
1312
+ },
1313
+ {
1314
+ "epoch": 1.5117219078415522,
1315
+ "grad_norm": Infinity,
1316
+ "learning_rate": 2.4804634869307467e-05,
1317
+ "loss": 2.2911,
1318
+ "step": 1870
1319
+ },
1320
+ {
1321
+ "epoch": 1.5198059822150363,
1322
+ "grad_norm": Infinity,
1323
+ "learning_rate": 2.4669900296416062e-05,
1324
+ "loss": 1.7301,
1325
+ "step": 1880
1326
+ },
1327
+ {
1328
+ "epoch": 1.5278900565885207,
1329
+ "grad_norm": Infinity,
1330
+ "learning_rate": 2.4535165723524657e-05,
1331
+ "loss": 0.6863,
1332
+ "step": 1890
1333
+ },
1334
+ {
1335
+ "epoch": 1.5359741309620047,
1336
+ "grad_norm": Infinity,
1337
+ "learning_rate": 2.4400431150633255e-05,
1338
+ "loss": 1.8456,
1339
+ "step": 1900
1340
+ },
1341
+ {
1342
+ "epoch": 1.5440582053354892,
1343
+ "grad_norm": Infinity,
1344
+ "learning_rate": 2.426569657774185e-05,
1345
+ "loss": 2.3463,
1346
+ "step": 1910
1347
+ },
1348
+ {
1349
+ "epoch": 1.5521422797089732,
1350
+ "grad_norm": Infinity,
1351
+ "learning_rate": 2.4130962004850445e-05,
1352
+ "loss": 1.63,
1353
+ "step": 1920
1354
+ },
1355
+ {
1356
+ "epoch": 1.5602263540824577,
1357
+ "grad_norm": Infinity,
1358
+ "learning_rate": 2.3996227431959044e-05,
1359
+ "loss": 2.1095,
1360
+ "step": 1930
1361
+ },
1362
+ {
1363
+ "epoch": 1.5683104284559417,
1364
+ "grad_norm": Infinity,
1365
+ "learning_rate": 2.386149285906764e-05,
1366
+ "loss": 0.9828,
1367
+ "step": 1940
1368
+ },
1369
+ {
1370
+ "epoch": 1.5763945028294262,
1371
+ "grad_norm": Infinity,
1372
+ "learning_rate": 2.3726758286176234e-05,
1373
+ "loss": 0.7091,
1374
+ "step": 1950
1375
+ },
1376
+ {
1377
+ "epoch": 1.5844785772029102,
1378
+ "grad_norm": Infinity,
1379
+ "learning_rate": 2.359202371328483e-05,
1380
+ "loss": 0.5691,
1381
+ "step": 1960
1382
+ },
1383
+ {
1384
+ "epoch": 1.5925626515763947,
1385
+ "grad_norm": Infinity,
1386
+ "learning_rate": 2.3457289140393427e-05,
1387
+ "loss": 1.5768,
1388
+ "step": 1970
1389
+ },
1390
+ {
1391
+ "epoch": 1.6006467259498787,
1392
+ "grad_norm": Infinity,
1393
+ "learning_rate": 2.3322554567502022e-05,
1394
+ "loss": 1.161,
1395
+ "step": 1980
1396
+ },
1397
+ {
1398
+ "epoch": 1.6087308003233631,
1399
+ "grad_norm": Infinity,
1400
+ "learning_rate": 2.3187819994610617e-05,
1401
+ "loss": 0.9278,
1402
+ "step": 1990
1403
+ },
1404
+ {
1405
+ "epoch": 1.6168148746968471,
1406
+ "grad_norm": Infinity,
1407
+ "learning_rate": 2.3053085421719216e-05,
1408
+ "loss": 1.0681,
1409
+ "step": 2000
1410
+ },
1411
+ {
1412
+ "epoch": 1.6248989490703316,
1413
+ "grad_norm": Infinity,
1414
+ "learning_rate": 2.291835084882781e-05,
1415
+ "loss": 2.3668,
1416
+ "step": 2010
1417
+ },
1418
+ {
1419
+ "epoch": 1.6329830234438156,
1420
+ "grad_norm": Infinity,
1421
+ "learning_rate": 2.2783616275936406e-05,
1422
+ "loss": 0.7226,
1423
+ "step": 2020
1424
+ },
1425
+ {
1426
+ "epoch": 1.6410670978172999,
1427
+ "grad_norm": Infinity,
1428
+ "learning_rate": 2.2648881703045e-05,
1429
+ "loss": 0.5279,
1430
+ "step": 2030
1431
+ },
1432
+ {
1433
+ "epoch": 1.649151172190784,
1434
+ "grad_norm": Infinity,
1435
+ "learning_rate": 2.25141471301536e-05,
1436
+ "loss": 0.7175,
1437
+ "step": 2040
1438
+ },
1439
+ {
1440
+ "epoch": 1.6572352465642683,
1441
+ "grad_norm": Infinity,
1442
+ "learning_rate": 2.2379412557262194e-05,
1443
+ "loss": 2.026,
1444
+ "step": 2050
1445
+ },
1446
+ {
1447
+ "epoch": 1.6653193209377526,
1448
+ "grad_norm": Infinity,
1449
+ "learning_rate": 2.224467798437079e-05,
1450
+ "loss": 1.204,
1451
+ "step": 2060
1452
+ },
1453
+ {
1454
+ "epoch": 1.6734033953112368,
1455
+ "grad_norm": Infinity,
1456
+ "learning_rate": 2.2109943411479387e-05,
1457
+ "loss": 2.0731,
1458
+ "step": 2070
1459
+ },
1460
+ {
1461
+ "epoch": 1.681487469684721,
1462
+ "grad_norm": Infinity,
1463
+ "learning_rate": 2.1975208838587983e-05,
1464
+ "loss": 1.9343,
1465
+ "step": 2080
1466
+ },
1467
+ {
1468
+ "epoch": 1.6895715440582053,
1469
+ "grad_norm": Infinity,
1470
+ "learning_rate": 2.1840474265696578e-05,
1471
+ "loss": 2.1806,
1472
+ "step": 2090
1473
+ },
1474
+ {
1475
+ "epoch": 1.6976556184316896,
1476
+ "grad_norm": Infinity,
1477
+ "learning_rate": 2.1705739692805176e-05,
1478
+ "loss": 2.457,
1479
+ "step": 2100
1480
+ },
1481
+ {
1482
+ "epoch": 1.7057396928051738,
1483
+ "grad_norm": Infinity,
1484
+ "learning_rate": 2.157100511991377e-05,
1485
+ "loss": 1.7964,
1486
+ "step": 2110
1487
+ },
1488
+ {
1489
+ "epoch": 1.713823767178658,
1490
+ "grad_norm": Infinity,
1491
+ "learning_rate": 2.1436270547022366e-05,
1492
+ "loss": 1.9725,
1493
+ "step": 2120
1494
+ },
1495
+ {
1496
+ "epoch": 1.7219078415521423,
1497
+ "grad_norm": Infinity,
1498
+ "learning_rate": 2.130153597413096e-05,
1499
+ "loss": 1.4176,
1500
+ "step": 2130
1501
+ },
1502
+ {
1503
+ "epoch": 1.7299919159256265,
1504
+ "grad_norm": Infinity,
1505
+ "learning_rate": 2.116680140123956e-05,
1506
+ "loss": 2.6819,
1507
+ "step": 2140
1508
+ },
1509
+ {
1510
+ "epoch": 1.7380759902991108,
1511
+ "grad_norm": Infinity,
1512
+ "learning_rate": 2.1032066828348154e-05,
1513
+ "loss": 2.2248,
1514
+ "step": 2150
1515
+ },
1516
+ {
1517
+ "epoch": 1.746160064672595,
1518
+ "grad_norm": Infinity,
1519
+ "learning_rate": 2.089733225545675e-05,
1520
+ "loss": 2.2926,
1521
+ "step": 2160
1522
+ },
1523
+ {
1524
+ "epoch": 1.7542441390460792,
1525
+ "grad_norm": Infinity,
1526
+ "learning_rate": 2.0762597682565348e-05,
1527
+ "loss": 0.6392,
1528
+ "step": 2170
1529
+ },
1530
+ {
1531
+ "epoch": 1.7623282134195635,
1532
+ "grad_norm": Infinity,
1533
+ "learning_rate": 2.0627863109673943e-05,
1534
+ "loss": 1.4321,
1535
+ "step": 2180
1536
+ },
1537
+ {
1538
+ "epoch": 1.7704122877930477,
1539
+ "grad_norm": Infinity,
1540
+ "learning_rate": 2.0493128536782538e-05,
1541
+ "loss": 1.9084,
1542
+ "step": 2190
1543
+ },
1544
+ {
1545
+ "epoch": 1.778496362166532,
1546
+ "grad_norm": Infinity,
1547
+ "learning_rate": 2.0358393963891133e-05,
1548
+ "loss": 2.2621,
1549
+ "step": 2200
1550
+ },
1551
+ {
1552
+ "epoch": 1.7865804365400162,
1553
+ "grad_norm": Infinity,
1554
+ "learning_rate": 2.022365939099973e-05,
1555
+ "loss": 1.8285,
1556
+ "step": 2210
1557
+ },
1558
+ {
1559
+ "epoch": 1.7946645109135004,
1560
+ "grad_norm": Infinity,
1561
+ "learning_rate": 2.008892481810833e-05,
1562
+ "loss": 1.5897,
1563
+ "step": 2220
1564
+ },
1565
+ {
1566
+ "epoch": 1.8027485852869847,
1567
+ "grad_norm": Infinity,
1568
+ "learning_rate": 1.9954190245216925e-05,
1569
+ "loss": 1.6952,
1570
+ "step": 2230
1571
+ },
1572
+ {
1573
+ "epoch": 1.810832659660469,
1574
+ "grad_norm": Infinity,
1575
+ "learning_rate": 1.981945567232552e-05,
1576
+ "loss": 2.6125,
1577
+ "step": 2240
1578
+ },
1579
+ {
1580
+ "epoch": 1.8189167340339532,
1581
+ "grad_norm": Infinity,
1582
+ "learning_rate": 1.9684721099434118e-05,
1583
+ "loss": 1.2341,
1584
+ "step": 2250
1585
+ },
1586
+ {
1587
+ "epoch": 1.8270008084074374,
1588
+ "grad_norm": Infinity,
1589
+ "learning_rate": 1.9549986526542713e-05,
1590
+ "loss": 1.9369,
1591
+ "step": 2260
1592
+ },
1593
+ {
1594
+ "epoch": 1.8350848827809216,
1595
+ "grad_norm": Infinity,
1596
+ "learning_rate": 1.9415251953651308e-05,
1597
+ "loss": 2.6913,
1598
+ "step": 2270
1599
+ },
1600
+ {
1601
+ "epoch": 1.8431689571544059,
1602
+ "grad_norm": Infinity,
1603
+ "learning_rate": 1.9280517380759907e-05,
1604
+ "loss": 2.0335,
1605
+ "step": 2280
1606
+ },
1607
+ {
1608
+ "epoch": 1.85125303152789,
1609
+ "grad_norm": Infinity,
1610
+ "learning_rate": 1.91457828078685e-05,
1611
+ "loss": 1.2543,
1612
+ "step": 2290
1613
+ },
1614
+ {
1615
+ "epoch": 1.8593371059013744,
1616
+ "grad_norm": Infinity,
1617
+ "learning_rate": 1.9011048234977097e-05,
1618
+ "loss": 1.6764,
1619
+ "step": 2300
1620
+ },
1621
+ {
1622
+ "epoch": 1.8674211802748584,
1623
+ "grad_norm": Infinity,
1624
+ "learning_rate": 1.887631366208569e-05,
1625
+ "loss": 1.2704,
1626
+ "step": 2310
1627
+ },
1628
+ {
1629
+ "epoch": 1.8755052546483428,
1630
+ "grad_norm": Infinity,
1631
+ "learning_rate": 1.874157908919429e-05,
1632
+ "loss": 2.1497,
1633
+ "step": 2320
1634
+ },
1635
+ {
1636
+ "epoch": 1.8835893290218269,
1637
+ "grad_norm": Infinity,
1638
+ "learning_rate": 1.8606844516302885e-05,
1639
+ "loss": 1.7158,
1640
+ "step": 2330
1641
+ },
1642
+ {
1643
+ "epoch": 1.8916734033953113,
1644
+ "grad_norm": Infinity,
1645
+ "learning_rate": 1.847210994341148e-05,
1646
+ "loss": 0.9835,
1647
+ "step": 2340
1648
+ },
1649
+ {
1650
+ "epoch": 1.8997574777687953,
1651
+ "grad_norm": Infinity,
1652
+ "learning_rate": 1.833737537052008e-05,
1653
+ "loss": 1.6897,
1654
+ "step": 2350
1655
+ },
1656
+ {
1657
+ "epoch": 1.9078415521422798,
1658
+ "grad_norm": Infinity,
1659
+ "learning_rate": 1.8202640797628673e-05,
1660
+ "loss": 1.5966,
1661
+ "step": 2360
1662
+ },
1663
+ {
1664
+ "epoch": 1.9159256265157638,
1665
+ "grad_norm": Infinity,
1666
+ "learning_rate": 1.806790622473727e-05,
1667
+ "loss": 1.3293,
1668
+ "step": 2370
1669
+ },
1670
+ {
1671
+ "epoch": 1.9240097008892483,
1672
+ "grad_norm": Infinity,
1673
+ "learning_rate": 1.7933171651845863e-05,
1674
+ "loss": 0.9033,
1675
+ "step": 2380
1676
+ },
1677
+ {
1678
+ "epoch": 1.9320937752627323,
1679
+ "grad_norm": Infinity,
1680
+ "learning_rate": 1.7798437078954462e-05,
1681
+ "loss": 1.1496,
1682
+ "step": 2390
1683
+ },
1684
+ {
1685
+ "epoch": 1.9401778496362168,
1686
+ "grad_norm": Infinity,
1687
+ "learning_rate": 1.7663702506063057e-05,
1688
+ "loss": 1.0576,
1689
+ "step": 2400
1690
+ },
1691
+ {
1692
+ "epoch": 1.9482619240097008,
1693
+ "grad_norm": Infinity,
1694
+ "learning_rate": 1.7528967933171652e-05,
1695
+ "loss": 2.219,
1696
+ "step": 2410
1697
+ },
1698
+ {
1699
+ "epoch": 1.9563459983831852,
1700
+ "grad_norm": Infinity,
1701
+ "learning_rate": 1.739423336028025e-05,
1702
+ "loss": 0.8811,
1703
+ "step": 2420
1704
+ },
1705
+ {
1706
+ "epoch": 1.9644300727566693,
1707
+ "grad_norm": Infinity,
1708
+ "learning_rate": 1.7259498787388845e-05,
1709
+ "loss": 1.5159,
1710
+ "step": 2430
1711
+ },
1712
+ {
1713
+ "epoch": 1.9725141471301537,
1714
+ "grad_norm": Infinity,
1715
+ "learning_rate": 1.712476421449744e-05,
1716
+ "loss": 1.5736,
1717
+ "step": 2440
1718
+ },
1719
+ {
1720
+ "epoch": 1.9805982215036377,
1721
+ "grad_norm": Infinity,
1722
+ "learning_rate": 1.6990029641606035e-05,
1723
+ "loss": 2.0976,
1724
+ "step": 2450
1725
+ },
1726
+ {
1727
+ "epoch": 1.9886822958771222,
1728
+ "grad_norm": Infinity,
1729
+ "learning_rate": 1.6855295068714634e-05,
1730
+ "loss": 2.2363,
1731
+ "step": 2460
1732
+ },
1733
+ {
1734
+ "epoch": 1.9967663702506062,
1735
+ "grad_norm": Infinity,
1736
+ "learning_rate": 1.672056049582323e-05,
1737
+ "loss": 2.5238,
1738
+ "step": 2470
1739
+ },
1740
+ {
1741
+ "epoch": 2.0048504446240907,
1742
+ "grad_norm": Infinity,
1743
+ "learning_rate": 1.6585825922931824e-05,
1744
+ "loss": 0.9174,
1745
+ "step": 2480
1746
+ },
1747
+ {
1748
+ "epoch": 2.0129345189975747,
1749
+ "grad_norm": Infinity,
1750
+ "learning_rate": 1.6451091350040422e-05,
1751
+ "loss": 1.5876,
1752
+ "step": 2490
1753
+ },
1754
+ {
1755
+ "epoch": 2.021018593371059,
1756
+ "grad_norm": Infinity,
1757
+ "learning_rate": 1.6316356777149017e-05,
1758
+ "loss": 1.129,
1759
+ "step": 2500
1760
+ },
1761
+ {
1762
+ "epoch": 2.029102667744543,
1763
+ "grad_norm": Infinity,
1764
+ "learning_rate": 1.6181622204257612e-05,
1765
+ "loss": 1.6202,
1766
+ "step": 2510
1767
+ },
1768
+ {
1769
+ "epoch": 2.0371867421180276,
1770
+ "grad_norm": Infinity,
1771
+ "learning_rate": 1.6046887631366207e-05,
1772
+ "loss": 0.9087,
1773
+ "step": 2520
1774
+ },
1775
+ {
1776
+ "epoch": 2.0452708164915117,
1777
+ "grad_norm": Infinity,
1778
+ "learning_rate": 1.5912153058474806e-05,
1779
+ "loss": 2.0087,
1780
+ "step": 2530
1781
+ },
1782
+ {
1783
+ "epoch": 2.053354890864996,
1784
+ "grad_norm": Infinity,
1785
+ "learning_rate": 1.57774184855834e-05,
1786
+ "loss": 2.1463,
1787
+ "step": 2540
1788
+ },
1789
+ {
1790
+ "epoch": 2.06143896523848,
1791
+ "grad_norm": Infinity,
1792
+ "learning_rate": 1.5642683912691996e-05,
1793
+ "loss": 1.7217,
1794
+ "step": 2550
1795
+ },
1796
+ {
1797
+ "epoch": 2.0695230396119646,
1798
+ "grad_norm": Infinity,
1799
+ "learning_rate": 1.5507949339800594e-05,
1800
+ "loss": 0.7802,
1801
+ "step": 2560
1802
+ },
1803
+ {
1804
+ "epoch": 2.0776071139854486,
1805
+ "grad_norm": Infinity,
1806
+ "learning_rate": 1.537321476690919e-05,
1807
+ "loss": 2.4857,
1808
+ "step": 2570
1809
+ },
1810
+ {
1811
+ "epoch": 2.085691188358933,
1812
+ "grad_norm": Infinity,
1813
+ "learning_rate": 1.5238480194017784e-05,
1814
+ "loss": 1.5868,
1815
+ "step": 2580
1816
+ },
1817
+ {
1818
+ "epoch": 2.093775262732417,
1819
+ "grad_norm": Infinity,
1820
+ "learning_rate": 1.510374562112638e-05,
1821
+ "loss": 2.8292,
1822
+ "step": 2590
1823
+ },
1824
+ {
1825
+ "epoch": 2.1018593371059016,
1826
+ "grad_norm": Infinity,
1827
+ "learning_rate": 1.4969011048234976e-05,
1828
+ "loss": 1.4174,
1829
+ "step": 2600
1830
+ },
1831
+ {
1832
+ "epoch": 2.1099434114793856,
1833
+ "grad_norm": Infinity,
1834
+ "learning_rate": 1.4834276475343573e-05,
1835
+ "loss": 1.4931,
1836
+ "step": 2610
1837
+ },
1838
+ {
1839
+ "epoch": 2.11802748585287,
1840
+ "grad_norm": Infinity,
1841
+ "learning_rate": 1.469954190245217e-05,
1842
+ "loss": 1.1888,
1843
+ "step": 2620
1844
+ },
1845
+ {
1846
+ "epoch": 2.126111560226354,
1847
+ "grad_norm": Infinity,
1848
+ "learning_rate": 1.4564807329560768e-05,
1849
+ "loss": 2.5423,
1850
+ "step": 2630
1851
+ },
1852
+ {
1853
+ "epoch": 2.1341956345998385,
1854
+ "grad_norm": Infinity,
1855
+ "learning_rate": 1.4430072756669363e-05,
1856
+ "loss": 1.0222,
1857
+ "step": 2640
1858
+ },
1859
+ {
1860
+ "epoch": 2.1422797089733225,
1861
+ "grad_norm": Infinity,
1862
+ "learning_rate": 1.429533818377796e-05,
1863
+ "loss": 1.2646,
1864
+ "step": 2650
1865
+ },
1866
+ {
1867
+ "epoch": 2.1503637833468066,
1868
+ "grad_norm": Infinity,
1869
+ "learning_rate": 1.4160603610886556e-05,
1870
+ "loss": 0.8661,
1871
+ "step": 2660
1872
+ },
1873
+ {
1874
+ "epoch": 2.158447857720291,
1875
+ "grad_norm": Infinity,
1876
+ "learning_rate": 1.4025869037995151e-05,
1877
+ "loss": 1.0685,
1878
+ "step": 2670
1879
+ },
1880
+ {
1881
+ "epoch": 2.1665319320937755,
1882
+ "grad_norm": Infinity,
1883
+ "learning_rate": 1.3891134465103748e-05,
1884
+ "loss": 1.6561,
1885
+ "step": 2680
1886
+ },
1887
+ {
1888
+ "epoch": 2.1746160064672595,
1889
+ "grad_norm": Infinity,
1890
+ "learning_rate": 1.3756399892212343e-05,
1891
+ "loss": 1.4664,
1892
+ "step": 2690
1893
+ },
1894
+ {
1895
+ "epoch": 2.1827000808407435,
1896
+ "grad_norm": Infinity,
1897
+ "learning_rate": 1.362166531932094e-05,
1898
+ "loss": 1.8332,
1899
+ "step": 2700
1900
+ },
1901
+ {
1902
+ "epoch": 2.190784155214228,
1903
+ "grad_norm": Infinity,
1904
+ "learning_rate": 1.3486930746429535e-05,
1905
+ "loss": 1.2506,
1906
+ "step": 2710
1907
+ },
1908
+ {
1909
+ "epoch": 2.1988682295877124,
1910
+ "grad_norm": Infinity,
1911
+ "learning_rate": 1.3352196173538131e-05,
1912
+ "loss": 1.1132,
1913
+ "step": 2720
1914
+ },
1915
+ {
1916
+ "epoch": 2.2069523039611965,
1917
+ "grad_norm": Infinity,
1918
+ "learning_rate": 1.3217461600646728e-05,
1919
+ "loss": 0.8307,
1920
+ "step": 2730
1921
+ },
1922
+ {
1923
+ "epoch": 2.2150363783346805,
1924
+ "grad_norm": Infinity,
1925
+ "learning_rate": 1.3082727027755323e-05,
1926
+ "loss": 1.706,
1927
+ "step": 2740
1928
+ },
1929
+ {
1930
+ "epoch": 2.223120452708165,
1931
+ "grad_norm": Infinity,
1932
+ "learning_rate": 1.294799245486392e-05,
1933
+ "loss": 1.2033,
1934
+ "step": 2750
1935
+ },
1936
+ {
1937
+ "epoch": 2.231204527081649,
1938
+ "grad_norm": Infinity,
1939
+ "learning_rate": 1.2813257881972515e-05,
1940
+ "loss": 1.5921,
1941
+ "step": 2760
1942
+ },
1943
+ {
1944
+ "epoch": 2.2392886014551334,
1945
+ "grad_norm": Infinity,
1946
+ "learning_rate": 1.2678523309081111e-05,
1947
+ "loss": 1.1893,
1948
+ "step": 2770
1949
+ },
1950
+ {
1951
+ "epoch": 2.2473726758286174,
1952
+ "grad_norm": Infinity,
1953
+ "learning_rate": 1.2543788736189706e-05,
1954
+ "loss": 1.9335,
1955
+ "step": 2780
1956
+ },
1957
+ {
1958
+ "epoch": 2.255456750202102,
1959
+ "grad_norm": Infinity,
1960
+ "learning_rate": 1.2409054163298303e-05,
1961
+ "loss": 1.5802,
1962
+ "step": 2790
1963
+ },
1964
+ {
1965
+ "epoch": 2.263540824575586,
1966
+ "grad_norm": Infinity,
1967
+ "learning_rate": 1.22743195904069e-05,
1968
+ "loss": 2.0087,
1969
+ "step": 2800
1970
+ },
1971
+ {
1972
+ "epoch": 2.2716248989490704,
1973
+ "grad_norm": Infinity,
1974
+ "learning_rate": 1.2139585017515495e-05,
1975
+ "loss": 1.1383,
1976
+ "step": 2810
1977
+ },
1978
+ {
1979
+ "epoch": 2.2797089733225544,
1980
+ "grad_norm": Infinity,
1981
+ "learning_rate": 1.2004850444624092e-05,
1982
+ "loss": 1.3281,
1983
+ "step": 2820
1984
+ },
1985
+ {
1986
+ "epoch": 2.287793047696039,
1987
+ "grad_norm": Infinity,
1988
+ "learning_rate": 1.1870115871732687e-05,
1989
+ "loss": 1.0895,
1990
+ "step": 2830
1991
+ },
1992
+ {
1993
+ "epoch": 2.295877122069523,
1994
+ "grad_norm": Infinity,
1995
+ "learning_rate": 1.1735381298841283e-05,
1996
+ "loss": 1.0182,
1997
+ "step": 2840
1998
+ },
1999
+ {
2000
+ "epoch": 2.3039611964430073,
2001
+ "grad_norm": Infinity,
2002
+ "learning_rate": 1.1600646725949878e-05,
2003
+ "loss": 1.6568,
2004
+ "step": 2850
2005
+ },
2006
+ {
2007
+ "epoch": 2.3120452708164914,
2008
+ "grad_norm": Infinity,
2009
+ "learning_rate": 1.1465912153058475e-05,
2010
+ "loss": 1.6142,
2011
+ "step": 2860
2012
+ },
2013
+ {
2014
+ "epoch": 2.320129345189976,
2015
+ "grad_norm": Infinity,
2016
+ "learning_rate": 1.1331177580167072e-05,
2017
+ "loss": 1.9218,
2018
+ "step": 2870
2019
+ },
2020
+ {
2021
+ "epoch": 2.32821341956346,
2022
+ "grad_norm": Infinity,
2023
+ "learning_rate": 1.1196443007275667e-05,
2024
+ "loss": 1.6749,
2025
+ "step": 2880
2026
+ },
2027
+ {
2028
+ "epoch": 2.3362974939369443,
2029
+ "grad_norm": Infinity,
2030
+ "learning_rate": 1.1061708434384263e-05,
2031
+ "loss": 0.6671,
2032
+ "step": 2890
2033
+ },
2034
+ {
2035
+ "epoch": 2.3443815683104283,
2036
+ "grad_norm": Infinity,
2037
+ "learning_rate": 1.0926973861492859e-05,
2038
+ "loss": 1.8723,
2039
+ "step": 2900
2040
+ },
2041
+ {
2042
+ "epoch": 2.352465642683913,
2043
+ "grad_norm": Infinity,
2044
+ "learning_rate": 1.0792239288601455e-05,
2045
+ "loss": 1.8936,
2046
+ "step": 2910
2047
+ },
2048
+ {
2049
+ "epoch": 2.360549717057397,
2050
+ "grad_norm": Infinity,
2051
+ "learning_rate": 1.065750471571005e-05,
2052
+ "loss": 1.7514,
2053
+ "step": 2920
2054
+ },
2055
+ {
2056
+ "epoch": 2.3686337914308813,
2057
+ "grad_norm": Infinity,
2058
+ "learning_rate": 1.0522770142818649e-05,
2059
+ "loss": 1.6109,
2060
+ "step": 2930
2061
+ },
2062
+ {
2063
+ "epoch": 2.3767178658043653,
2064
+ "grad_norm": Infinity,
2065
+ "learning_rate": 1.0388035569927244e-05,
2066
+ "loss": 2.3036,
2067
+ "step": 2940
2068
+ },
2069
+ {
2070
+ "epoch": 2.3848019401778497,
2071
+ "grad_norm": Infinity,
2072
+ "learning_rate": 1.025330099703584e-05,
2073
+ "loss": 1.6592,
2074
+ "step": 2950
2075
+ },
2076
+ {
2077
+ "epoch": 2.3928860145513338,
2078
+ "grad_norm": Infinity,
2079
+ "learning_rate": 1.0118566424144437e-05,
2080
+ "loss": 1.64,
2081
+ "step": 2960
2082
+ },
2083
+ {
2084
+ "epoch": 2.4009700889248182,
2085
+ "grad_norm": Infinity,
2086
+ "learning_rate": 9.983831851253032e-06,
2087
+ "loss": 2.0912,
2088
+ "step": 2970
2089
+ },
2090
+ {
2091
+ "epoch": 2.4090541632983022,
2092
+ "grad_norm": Infinity,
2093
+ "learning_rate": 9.849097278361629e-06,
2094
+ "loss": 1.4023,
2095
+ "step": 2980
2096
+ },
2097
+ {
2098
+ "epoch": 2.4171382376717867,
2099
+ "grad_norm": Infinity,
2100
+ "learning_rate": 9.714362705470224e-06,
2101
+ "loss": 1.8342,
2102
+ "step": 2990
2103
+ },
2104
+ {
2105
+ "epoch": 2.4252223120452707,
2106
+ "grad_norm": Infinity,
2107
+ "learning_rate": 9.57962813257882e-06,
2108
+ "loss": 0.9314,
2109
+ "step": 3000
2110
+ },
2111
+ {
2112
+ "epoch": 2.433306386418755,
2113
+ "grad_norm": Infinity,
2114
+ "learning_rate": 9.444893559687416e-06,
2115
+ "loss": 1.271,
2116
+ "step": 3010
2117
+ },
2118
+ {
2119
+ "epoch": 2.441390460792239,
2120
+ "grad_norm": Infinity,
2121
+ "learning_rate": 9.310158986796012e-06,
2122
+ "loss": 2.358,
2123
+ "step": 3020
2124
+ },
2125
+ {
2126
+ "epoch": 2.4494745351657237,
2127
+ "grad_norm": Infinity,
2128
+ "learning_rate": 9.175424413904609e-06,
2129
+ "loss": 1.9627,
2130
+ "step": 3030
2131
+ },
2132
+ {
2133
+ "epoch": 2.4575586095392077,
2134
+ "grad_norm": Infinity,
2135
+ "learning_rate": 9.040689841013204e-06,
2136
+ "loss": 1.1173,
2137
+ "step": 3040
2138
+ },
2139
+ {
2140
+ "epoch": 2.465642683912692,
2141
+ "grad_norm": Infinity,
2142
+ "learning_rate": 8.9059552681218e-06,
2143
+ "loss": 0.91,
2144
+ "step": 3050
2145
+ },
2146
+ {
2147
+ "epoch": 2.473726758286176,
2148
+ "grad_norm": Infinity,
2149
+ "learning_rate": 8.771220695230396e-06,
2150
+ "loss": 0.8115,
2151
+ "step": 3060
2152
+ },
2153
+ {
2154
+ "epoch": 2.4818108326596606,
2155
+ "grad_norm": Infinity,
2156
+ "learning_rate": 8.636486122338992e-06,
2157
+ "loss": 1.3157,
2158
+ "step": 3070
2159
+ },
2160
+ {
2161
+ "epoch": 2.4898949070331446,
2162
+ "grad_norm": Infinity,
2163
+ "learning_rate": 8.501751549447589e-06,
2164
+ "loss": 2.2141,
2165
+ "step": 3080
2166
+ },
2167
+ {
2168
+ "epoch": 2.497978981406629,
2169
+ "grad_norm": Infinity,
2170
+ "learning_rate": 8.367016976556184e-06,
2171
+ "loss": 1.5275,
2172
+ "step": 3090
2173
+ },
2174
+ {
2175
+ "epoch": 2.506063055780113,
2176
+ "grad_norm": Infinity,
2177
+ "learning_rate": 8.23228240366478e-06,
2178
+ "loss": 1.8859,
2179
+ "step": 3100
2180
+ },
2181
+ {
2182
+ "epoch": 2.5141471301535976,
2183
+ "grad_norm": Infinity,
2184
+ "learning_rate": 8.097547830773376e-06,
2185
+ "loss": 1.6131,
2186
+ "step": 3110
2187
+ },
2188
+ {
2189
+ "epoch": 2.5222312045270816,
2190
+ "grad_norm": Infinity,
2191
+ "learning_rate": 7.962813257881973e-06,
2192
+ "loss": 1.4654,
2193
+ "step": 3120
2194
+ },
2195
+ {
2196
+ "epoch": 2.5303152789005656,
2197
+ "grad_norm": Infinity,
2198
+ "learning_rate": 7.82807868499057e-06,
2199
+ "loss": 1.4129,
2200
+ "step": 3130
2201
+ },
2202
+ {
2203
+ "epoch": 2.53839935327405,
2204
+ "grad_norm": Infinity,
2205
+ "learning_rate": 7.693344112099166e-06,
2206
+ "loss": 1.2493,
2207
+ "step": 3140
2208
+ },
2209
+ {
2210
+ "epoch": 2.5464834276475345,
2211
+ "grad_norm": Infinity,
2212
+ "learning_rate": 7.558609539207762e-06,
2213
+ "loss": 1.6047,
2214
+ "step": 3150
2215
+ },
2216
+ {
2217
+ "epoch": 2.5545675020210186,
2218
+ "grad_norm": Infinity,
2219
+ "learning_rate": 7.423874966316358e-06,
2220
+ "loss": 0.6597,
2221
+ "step": 3160
2222
+ },
2223
+ {
2224
+ "epoch": 2.5626515763945026,
2225
+ "grad_norm": Infinity,
2226
+ "learning_rate": 7.2891403934249536e-06,
2227
+ "loss": 1.8984,
2228
+ "step": 3170
2229
+ },
2230
+ {
2231
+ "epoch": 2.570735650767987,
2232
+ "grad_norm": Infinity,
2233
+ "learning_rate": 7.1544058205335494e-06,
2234
+ "loss": 1.9384,
2235
+ "step": 3180
2236
+ },
2237
+ {
2238
+ "epoch": 2.5788197251414715,
2239
+ "grad_norm": Infinity,
2240
+ "learning_rate": 7.019671247642145e-06,
2241
+ "loss": 2.2221,
2242
+ "step": 3190
2243
+ },
2244
+ {
2245
+ "epoch": 2.5869037995149555,
2246
+ "grad_norm": Infinity,
2247
+ "learning_rate": 6.884936674750741e-06,
2248
+ "loss": 1.1601,
2249
+ "step": 3200
2250
+ },
2251
+ {
2252
+ "epoch": 2.5949878738884395,
2253
+ "grad_norm": Infinity,
2254
+ "learning_rate": 6.750202101859338e-06,
2255
+ "loss": 2.0688,
2256
+ "step": 3210
2257
+ },
2258
+ {
2259
+ "epoch": 2.603071948261924,
2260
+ "grad_norm": Infinity,
2261
+ "learning_rate": 6.615467528967934e-06,
2262
+ "loss": 1.5725,
2263
+ "step": 3220
2264
+ },
2265
+ {
2266
+ "epoch": 2.6111560226354085,
2267
+ "grad_norm": Infinity,
2268
+ "learning_rate": 6.48073295607653e-06,
2269
+ "loss": 1.9509,
2270
+ "step": 3230
2271
+ },
2272
+ {
2273
+ "epoch": 2.6192400970088925,
2274
+ "grad_norm": Infinity,
2275
+ "learning_rate": 6.3459983831851255e-06,
2276
+ "loss": 1.8586,
2277
+ "step": 3240
2278
+ },
2279
+ {
2280
+ "epoch": 2.6273241713823765,
2281
+ "grad_norm": Infinity,
2282
+ "learning_rate": 6.211263810293721e-06,
2283
+ "loss": 1.516,
2284
+ "step": 3250
2285
+ },
2286
+ {
2287
+ "epoch": 2.635408245755861,
2288
+ "grad_norm": Infinity,
2289
+ "learning_rate": 6.076529237402317e-06,
2290
+ "loss": 1.5061,
2291
+ "step": 3260
2292
+ },
2293
+ {
2294
+ "epoch": 2.6434923201293454,
2295
+ "grad_norm": Infinity,
2296
+ "learning_rate": 5.941794664510914e-06,
2297
+ "loss": 0.9186,
2298
+ "step": 3270
2299
+ },
2300
+ {
2301
+ "epoch": 2.6515763945028294,
2302
+ "grad_norm": Infinity,
2303
+ "learning_rate": 5.80706009161951e-06,
2304
+ "loss": 1.5769,
2305
+ "step": 3280
2306
+ },
2307
+ {
2308
+ "epoch": 2.6596604688763135,
2309
+ "grad_norm": Infinity,
2310
+ "learning_rate": 5.6723255187281065e-06,
2311
+ "loss": 2.253,
2312
+ "step": 3290
2313
+ },
2314
+ {
2315
+ "epoch": 2.667744543249798,
2316
+ "grad_norm": Infinity,
2317
+ "learning_rate": 5.537590945836702e-06,
2318
+ "loss": 0.7681,
2319
+ "step": 3300
2320
+ },
2321
+ {
2322
+ "epoch": 2.6758286176232824,
2323
+ "grad_norm": Infinity,
2324
+ "learning_rate": 5.402856372945298e-06,
2325
+ "loss": 0.967,
2326
+ "step": 3310
2327
+ },
2328
+ {
2329
+ "epoch": 2.6839126919967664,
2330
+ "grad_norm": Infinity,
2331
+ "learning_rate": 5.268121800053894e-06,
2332
+ "loss": 2.1412,
2333
+ "step": 3320
2334
+ },
2335
+ {
2336
+ "epoch": 2.6919967663702504,
2337
+ "grad_norm": Infinity,
2338
+ "learning_rate": 5.13338722716249e-06,
2339
+ "loss": 3.0335,
2340
+ "step": 3330
2341
+ },
2342
+ {
2343
+ "epoch": 2.700080840743735,
2344
+ "grad_norm": Infinity,
2345
+ "learning_rate": 4.998652654271086e-06,
2346
+ "loss": 1.7116,
2347
+ "step": 3340
2348
+ },
2349
+ {
2350
+ "epoch": 2.7081649151172194,
2351
+ "grad_norm": Infinity,
2352
+ "learning_rate": 4.8639180813796825e-06,
2353
+ "loss": 1.5722,
2354
+ "step": 3350
2355
+ },
2356
+ {
2357
+ "epoch": 2.7162489894907034,
2358
+ "grad_norm": Infinity,
2359
+ "learning_rate": 4.729183508488278e-06,
2360
+ "loss": 0.9447,
2361
+ "step": 3360
2362
+ },
2363
+ {
2364
+ "epoch": 2.7243330638641874,
2365
+ "grad_norm": Infinity,
2366
+ "learning_rate": 4.594448935596874e-06,
2367
+ "loss": 1.5505,
2368
+ "step": 3370
2369
+ },
2370
+ {
2371
+ "epoch": 2.732417138237672,
2372
+ "grad_norm": Infinity,
2373
+ "learning_rate": 4.459714362705471e-06,
2374
+ "loss": 1.4774,
2375
+ "step": 3380
2376
+ },
2377
+ {
2378
+ "epoch": 2.740501212611156,
2379
+ "grad_norm": Infinity,
2380
+ "learning_rate": 4.324979789814067e-06,
2381
+ "loss": 0.9662,
2382
+ "step": 3390
2383
+ },
2384
+ {
2385
+ "epoch": 2.7485852869846403,
2386
+ "grad_norm": Infinity,
2387
+ "learning_rate": 4.190245216922663e-06,
2388
+ "loss": 1.3972,
2389
+ "step": 3400
2390
+ },
2391
+ {
2392
+ "epoch": 2.7566693613581243,
2393
+ "grad_norm": Infinity,
2394
+ "learning_rate": 4.0555106440312585e-06,
2395
+ "loss": 1.9129,
2396
+ "step": 3410
2397
+ },
2398
+ {
2399
+ "epoch": 2.764753435731609,
2400
+ "grad_norm": Infinity,
2401
+ "learning_rate": 3.920776071139854e-06,
2402
+ "loss": 1.3831,
2403
+ "step": 3420
2404
+ },
2405
+ {
2406
+ "epoch": 2.772837510105093,
2407
+ "grad_norm": Infinity,
2408
+ "learning_rate": 3.7860414982484507e-06,
2409
+ "loss": 1.2399,
2410
+ "step": 3430
2411
+ },
2412
+ {
2413
+ "epoch": 2.7809215844785773,
2414
+ "grad_norm": Infinity,
2415
+ "learning_rate": 3.6513069253570465e-06,
2416
+ "loss": 2.1903,
2417
+ "step": 3440
2418
+ },
2419
+ {
2420
+ "epoch": 2.7890056588520613,
2421
+ "grad_norm": Infinity,
2422
+ "learning_rate": 3.516572352465643e-06,
2423
+ "loss": 2.2974,
2424
+ "step": 3450
2425
+ },
2426
+ {
2427
+ "epoch": 2.7970897332255458,
2428
+ "grad_norm": Infinity,
2429
+ "learning_rate": 3.3818377795742387e-06,
2430
+ "loss": 0.904,
2431
+ "step": 3460
2432
+ },
2433
+ {
2434
+ "epoch": 2.80517380759903,
2435
+ "grad_norm": Infinity,
2436
+ "learning_rate": 3.2471032066828345e-06,
2437
+ "loss": 2.1944,
2438
+ "step": 3470
2439
+ },
2440
+ {
2441
+ "epoch": 2.8132578819725143,
2442
+ "grad_norm": Infinity,
2443
+ "learning_rate": 3.112368633791431e-06,
2444
+ "loss": 0.5356,
2445
+ "step": 3480
2446
+ },
2447
+ {
2448
+ "epoch": 2.8213419563459983,
2449
+ "grad_norm": Infinity,
2450
+ "learning_rate": 2.977634060900027e-06,
2451
+ "loss": 1.952,
2452
+ "step": 3490
2453
+ },
2454
+ {
2455
+ "epoch": 2.8294260307194827,
2456
+ "grad_norm": Infinity,
2457
+ "learning_rate": 2.842899488008623e-06,
2458
+ "loss": 0.8518,
2459
+ "step": 3500
2460
+ },
2461
+ {
2462
+ "epoch": 2.8375101050929668,
2463
+ "grad_norm": Infinity,
2464
+ "learning_rate": 2.7081649151172193e-06,
2465
+ "loss": 1.0664,
2466
+ "step": 3510
2467
+ },
2468
+ {
2469
+ "epoch": 2.845594179466451,
2470
+ "grad_norm": Infinity,
2471
+ "learning_rate": 2.573430342225815e-06,
2472
+ "loss": 1.7874,
2473
+ "step": 3520
2474
+ },
2475
+ {
2476
+ "epoch": 2.8536782538399352,
2477
+ "grad_norm": Infinity,
2478
+ "learning_rate": 2.4386957693344114e-06,
2479
+ "loss": 1.4999,
2480
+ "step": 3530
2481
+ },
2482
+ {
2483
+ "epoch": 2.8617623282134197,
2484
+ "grad_norm": Infinity,
2485
+ "learning_rate": 2.3039611964430073e-06,
2486
+ "loss": 1.01,
2487
+ "step": 3540
2488
+ },
2489
+ {
2490
+ "epoch": 2.8698464025869037,
2491
+ "grad_norm": Infinity,
2492
+ "learning_rate": 2.169226623551603e-06,
2493
+ "loss": 1.6775,
2494
+ "step": 3550
2495
+ },
2496
+ {
2497
+ "epoch": 2.877930476960388,
2498
+ "grad_norm": Infinity,
2499
+ "learning_rate": 2.0344920506602e-06,
2500
+ "loss": 0.7036,
2501
+ "step": 3560
2502
+ },
2503
+ {
2504
+ "epoch": 2.886014551333872,
2505
+ "grad_norm": Infinity,
2506
+ "learning_rate": 1.8997574777687957e-06,
2507
+ "loss": 1.2962,
2508
+ "step": 3570
2509
+ },
2510
+ {
2511
+ "epoch": 2.8940986257073567,
2512
+ "grad_norm": Infinity,
2513
+ "learning_rate": 1.7650229048773916e-06,
2514
+ "loss": 1.5148,
2515
+ "step": 3580
2516
+ },
2517
+ {
2518
+ "epoch": 2.9021827000808407,
2519
+ "grad_norm": Infinity,
2520
+ "learning_rate": 1.6302883319859876e-06,
2521
+ "loss": 1.6301,
2522
+ "step": 3590
2523
+ },
2524
+ {
2525
+ "epoch": 2.910266774454325,
2526
+ "grad_norm": Infinity,
2527
+ "learning_rate": 1.4955537590945837e-06,
2528
+ "loss": 1.4741,
2529
+ "step": 3600
2530
+ },
2531
+ {
2532
+ "epoch": 2.918350848827809,
2533
+ "grad_norm": Infinity,
2534
+ "learning_rate": 1.3608191862031798e-06,
2535
+ "loss": 1.4487,
2536
+ "step": 3610
2537
+ },
2538
+ {
2539
+ "epoch": 2.9264349232012936,
2540
+ "grad_norm": Infinity,
2541
+ "learning_rate": 1.2260846133117759e-06,
2542
+ "loss": 0.712,
2543
+ "step": 3620
2544
+ },
2545
+ {
2546
+ "epoch": 2.9345189975747776,
2547
+ "grad_norm": Infinity,
2548
+ "learning_rate": 1.091350040420372e-06,
2549
+ "loss": 1.6328,
2550
+ "step": 3630
2551
+ },
2552
+ {
2553
+ "epoch": 2.9426030719482617,
2554
+ "grad_norm": Infinity,
2555
+ "learning_rate": 9.566154675289678e-07,
2556
+ "loss": 1.4731,
2557
+ "step": 3640
2558
+ },
2559
+ {
2560
+ "epoch": 2.950687146321746,
2561
+ "grad_norm": Infinity,
2562
+ "learning_rate": 8.218808946375641e-07,
2563
+ "loss": 1.1577,
2564
+ "step": 3650
2565
+ },
2566
+ {
2567
+ "epoch": 2.9587712206952306,
2568
+ "grad_norm": Infinity,
2569
+ "learning_rate": 6.871463217461601e-07,
2570
+ "loss": 2.0929,
2571
+ "step": 3660
2572
+ },
2573
+ {
2574
+ "epoch": 2.9668552950687146,
2575
+ "grad_norm": Infinity,
2576
+ "learning_rate": 5.524117488547561e-07,
2577
+ "loss": 1.4322,
2578
+ "step": 3670
2579
+ },
2580
+ {
2581
+ "epoch": 2.9749393694421986,
2582
+ "grad_norm": Infinity,
2583
+ "learning_rate": 4.176771759633522e-07,
2584
+ "loss": 2.3774,
2585
+ "step": 3680
2586
+ },
2587
+ {
2588
+ "epoch": 2.983023443815683,
2589
+ "grad_norm": Infinity,
2590
+ "learning_rate": 2.8294260307194823e-07,
2591
+ "loss": 1.5767,
2592
+ "step": 3690
2593
+ },
2594
+ {
2595
+ "epoch": 2.9911075181891675,
2596
+ "grad_norm": Infinity,
2597
+ "learning_rate": 1.4820803018054433e-07,
2598
+ "loss": 2.7909,
2599
+ "step": 3700
2600
+ },
2601
+ {
2602
+ "epoch": 2.9991915925626516,
2603
+ "grad_norm": Infinity,
2604
+ "learning_rate": 1.3473457289140394e-08,
2605
+ "loss": 1.3558,
2606
+ "step": 3710
2607
+ }
2608
+ ],
2609
+ "logging_steps": 10,
2610
+ "max_steps": 3711,
2611
+ "num_input_tokens_seen": 0,
2612
+ "num_train_epochs": 3,
2613
+ "save_steps": 500,
2614
+ "stateful_callbacks": {
2615
+ "TrainerControl": {
2616
+ "args": {
2617
+ "should_epoch_stop": false,
2618
+ "should_evaluate": false,
2619
+ "should_log": false,
2620
+ "should_save": true,
2621
+ "should_training_stop": true
2622
+ },
2623
+ "attributes": {}
2624
+ }
2625
+ },
2626
+ "total_flos": 4915088628645888.0,
2627
+ "train_batch_size": 1,
2628
+ "trial_name": null,
2629
+ "trial_params": null
2630
+ }
norah_lora/checkpoint-3711/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9f7af70a1c91c1728aececa3729ab0591b5edd689612a906672255dbec45ed35
3
+ size 5304
norah_lora/special_tokens_map.json ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|ASSISTANT|>",
4
+ "<|USER|>"
5
+ ],
6
+ "bos_token": {
7
+ "content": "<|bos|>",
8
+ "lstrip": false,
9
+ "normalized": false,
10
+ "rstrip": false,
11
+ "single_word": false
12
+ },
13
+ "eos_token": {
14
+ "content": "<|endoftext|>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false
19
+ },
20
+ "pad_token": {
21
+ "content": "[PAD]",
22
+ "lstrip": false,
23
+ "normalized": false,
24
+ "rstrip": false,
25
+ "single_word": false
26
+ },
27
+ "unk_token": {
28
+ "content": "<unk>",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false
33
+ }
34
+ }
norah_lora/tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
norah_lora/tokenizer_config.json ADDED
@@ -0,0 +1,95 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": true,
3
+ "add_eos_token": false,
4
+ "add_prefix_space": null,
5
+ "added_tokens_decoder": {
6
+ "0": {
7
+ "content": "<unk>",
8
+ "lstrip": false,
9
+ "normalized": false,
10
+ "rstrip": false,
11
+ "single_word": false,
12
+ "special": true
13
+ },
14
+ "1": {
15
+ "content": "<s>",
16
+ "lstrip": false,
17
+ "normalized": false,
18
+ "rstrip": false,
19
+ "single_word": false,
20
+ "special": true
21
+ },
22
+ "2": {
23
+ "content": "</s>",
24
+ "lstrip": false,
25
+ "normalized": false,
26
+ "rstrip": false,
27
+ "single_word": false,
28
+ "special": true
29
+ },
30
+ "32000": {
31
+ "content": "<|bos|>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false,
36
+ "special": true
37
+ },
38
+ "32001": {
39
+ "content": "<|endoftext|>",
40
+ "lstrip": false,
41
+ "normalized": false,
42
+ "rstrip": false,
43
+ "single_word": false,
44
+ "special": true
45
+ },
46
+ "32002": {
47
+ "content": "[PAD]",
48
+ "lstrip": false,
49
+ "normalized": false,
50
+ "rstrip": false,
51
+ "single_word": false,
52
+ "special": true
53
+ },
54
+ "32003": {
55
+ "content": "<|ASSISTANT|>",
56
+ "lstrip": false,
57
+ "normalized": false,
58
+ "rstrip": false,
59
+ "single_word": false,
60
+ "special": true
61
+ },
62
+ "32004": {
63
+ "content": "<|USER|>",
64
+ "lstrip": false,
65
+ "normalized": false,
66
+ "rstrip": false,
67
+ "single_word": false,
68
+ "special": true
69
+ }
70
+ },
71
+ "additional_special_tokens": [
72
+ "<|ASSISTANT|>",
73
+ "<|USER|>"
74
+ ],
75
+ "bos_token": "<|bos|>",
76
+ "chat_template": "{%- set ns = namespace(found=false) -%}{%- for message in messages -%}{%- if message['role'] == 'system' -%}{%- set ns.found = true -%}{%- endif -%}{%- endfor -%}{%- for message in messages %}{%- if message['role'] == 'system' -%}{{- '<|im_start|>system\n' + message['content'].rstrip() + '<|im_end|>\n' -}}{%- else -%}{%- if message['role'] == 'user' -%}{{-'<|im_start|>user\n' + message['content'].rstrip() + '<|im_end|>\n'-}}{%- else -%}{{-'<|im_start|>assistant\n' + message['content'] + '<|im_end|>\n' -}}{%- endif -%}{%- endif -%}{%- endfor -%}{%- if add_generation_prompt -%}{{-'<|im_start|>assistant\n'-}}{%- endif -%}",
77
+ "clean_up_tokenization_spaces": false,
78
+ "eos_token": "<|endoftext|>",
79
+ "extra_special_tokens": {},
80
+ "legacy": true,
81
+ "max_length": 1536,
82
+ "model_max_length": 1000000000000000019884624838656,
83
+ "pad_to_multiple_of": null,
84
+ "pad_token": "[PAD]",
85
+ "pad_token_type_id": 0,
86
+ "padding_side": "left",
87
+ "sp_model_kwargs": {},
88
+ "spaces_between_special_tokens": false,
89
+ "stride": 0,
90
+ "tokenizer_class": "LlamaTokenizerFast",
91
+ "truncation_side": "right",
92
+ "truncation_strategy": "longest_first",
93
+ "unk_token": "<unk>",
94
+ "use_default_system_prompt": true
95
+ }
test_norah.py ADDED
@@ -0,0 +1,56 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from transformers import AutoModelForCausalLM, AutoTokenizer, StoppingCriteria, StoppingCriteriaList
2
+ import torch
3
+
4
+ model_name = r"C:\Users\HP-Victus\GVAIDAL\Norah" # Use full path
5
+
6
+ print("🔄 Loading tokenizer and model...")
7
+
8
+ tokenizer = AutoTokenizer.from_pretrained(model_name, local_files_only=True)
9
+ model = AutoModelForCausalLM.from_pretrained(model_name, local_files_only=True, torch_dtype=torch.float16, device_map="auto")
10
+
11
+ def format_prompt(user_input):
12
+ return (
13
+ "Tu es un assistant IA utile et intelligent qui répond toujours en français avec des réponses courtes et claires.\n\n"
14
+ "Utilisateur: Bonjour, comment vas-tu ?\n"
15
+ "Assistant: Bonjour ! Je vais bien, merci. Comment puis-je vous aider ?\n\n"
16
+ f"Utilisateur: {user_input}\n"
17
+ "Assistant:"
18
+ )
19
+
20
+ # Test conversation
21
+ prompt = format_prompt("Bonjour, comment puis-je vous aider aujourd'hui ?")
22
+
23
+ inputs = tokenizer(prompt, return_tensors="pt", truncation=True, max_length=512).to("cuda" if torch.cuda.is_available() else "cpu")
24
+
25
+ print("📝 Generating response...")
26
+
27
+ # Encode names to block
28
+ bad_words = ["Jean", "Marie", "Bouchard", "Pierre", "Louis", "Antoine", "Jacques", "Robert", "Roper"]
29
+ bad_words_ids = [tokenizer.encode(word, add_special_tokens=False) for word in bad_words]
30
+
31
+ # Stopping criteria: Stop at sentence completion
32
+ class StopOnSentenceEnd(StoppingCriteria):
33
+ def __call__(self, input_ids, scores, **kwargs):
34
+ stop_tokens = [tokenizer.encode(".", add_special_tokens=False)[0],
35
+ tokenizer.encode("!", add_special_tokens=False)[0],
36
+ tokenizer.encode("?", add_special_tokens=False)[0]]
37
+ return any(input_ids[0, -1].item() == stop for stop in stop_tokens)
38
+
39
+ stopping_criteria = StoppingCriteriaList([StopOnSentenceEnd()])
40
+
41
+ # Generate response
42
+ outputs = model.generate(
43
+ **inputs,
44
+ max_length=100, # Allows complete sentences
45
+ min_length=10, # Ensures at least some response
46
+ do_sample=True, # Allows varied responses
47
+ temperature=0.7, # More natural responses
48
+ top_p=0.9, # Higher probability for relevant words
49
+ repetition_penalty=1.5, # Prevents repetition but keeps coherence
50
+ eos_token_id=model.config.eos_token_id,
51
+ stopping_criteria=stopping_criteria # Ensures sentence completion
52
+ )
53
+
54
+ # Decode and display response
55
+ response = tokenizer.decode(outputs[0], skip_special_tokens=True)
56
+ print("💬 Model Response:", response)
tokenize_dataset.py ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from transformers import AutoTokenizer
2
+ from datasets import load_dataset
3
+
4
+ # Load tokenizer and dataset
5
+ model_name = "Visdom9/Norah"
6
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
7
+ dataset = load_dataset("OpenAssistant/oasst1", split="train")
8
+
9
+ # Keep only French examples
10
+ dataset = dataset.filter(lambda x: x["lang"] == "fr")
11
+
12
+ # Tokenize dataset
13
+ def tokenize_function(examples):
14
+ model_inputs = tokenizer(
15
+ examples["text"], padding="max_length", truncation=True, max_length=512
16
+ )
17
+ model_inputs["labels"] = model_inputs["input_ids"][:] # ✅ Copy input_ids as labels
18
+ return model_inputs
19
+
20
+
21
+ # Apply tokenization
22
+ tokenized_dataset = dataset.map(tokenize_function, batched=True, remove_columns=dataset.column_names)
23
+
24
+ # Convert dataset to PyTorch tensors
25
+ tokenized_dataset.set_format("torch")
26
+
27
+ # Save tokenized dataset
28
+ tokenized_dataset.save_to_disk("tokenized_norah")
29
+
30
+ print("✅ Tokenization complete! Dataset saved to 'tokenized_norah'")
tokenized_norah/data-00000-of-00001.arrow ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d165415dd4278589d36555c08354f6bce3da3c6dddadd1ab72094ac5fe6d90ca
3
+ size 16498592
tokenized_norah/dataset_info.json ADDED
@@ -0,0 +1,65 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "builder_name": "parquet",
3
+ "citation": "",
4
+ "config_name": "default",
5
+ "dataset_name": "oasst1",
6
+ "dataset_size": 106034902,
7
+ "description": "",
8
+ "download_checksums": {
9
+ "hf://datasets/OpenAssistant/oasst1@fdf72ae0827c1cda404aff25b6603abec9e3399b/data/train-00000-of-00001-b42a775f407cee45.parquet": {
10
+ "num_bytes": 39516251,
11
+ "checksum": null
12
+ },
13
+ "hf://datasets/OpenAssistant/oasst1@fdf72ae0827c1cda404aff25b6603abec9e3399b/data/validation-00000-of-00001-134b8fd0c89408b6.parquet": {
14
+ "num_bytes": 2080179,
15
+ "checksum": null
16
+ }
17
+ },
18
+ "download_size": 41596430,
19
+ "features": {
20
+ "labels": {
21
+ "feature": {
22
+ "dtype": "int64",
23
+ "_type": "Value"
24
+ },
25
+ "_type": "Sequence"
26
+ },
27
+ "input_ids": {
28
+ "feature": {
29
+ "dtype": "int32",
30
+ "_type": "Value"
31
+ },
32
+ "_type": "Sequence"
33
+ },
34
+ "attention_mask": {
35
+ "feature": {
36
+ "dtype": "int8",
37
+ "_type": "Value"
38
+ },
39
+ "_type": "Sequence"
40
+ }
41
+ },
42
+ "homepage": "",
43
+ "license": "",
44
+ "size_in_bytes": 147631332,
45
+ "splits": {
46
+ "train": {
47
+ "name": "train",
48
+ "num_bytes": 100770129,
49
+ "num_examples": 84437,
50
+ "dataset_name": "oasst1"
51
+ },
52
+ "validation": {
53
+ "name": "validation",
54
+ "num_bytes": 5264773,
55
+ "num_examples": 4401,
56
+ "dataset_name": "oasst1"
57
+ }
58
+ },
59
+ "version": {
60
+ "version_str": "0.0.0",
61
+ "major": 0,
62
+ "minor": 0,
63
+ "patch": 0
64
+ }
65
+ }
tokenized_norah/state.json ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_data_files": [
3
+ {
4
+ "filename": "data-00000-of-00001.arrow"
5
+ }
6
+ ],
7
+ "_fingerprint": "8b9ef9ee38e784ae",
8
+ "_format_columns": null,
9
+ "_format_kwargs": {},
10
+ "_format_type": "torch",
11
+ "_output_all_columns": false,
12
+ "_split": "train"
13
+ }