--- library_name: transformers license: apache-2.0 base_model: nlpconnect/vit-gpt2-image-captioning tags: - generated_from_trainer model-index: - name: vit-gpt2-rocov22-ct-finetuned results: [] --- # vit-gpt2-rocov22-ct-finetuned This model is a fine-tuned version of [nlpconnect/vit-gpt2-image-captioning](https://huggingface.co/nlpconnect/vit-gpt2-image-captioning) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.3215 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.4502 | 1.0 | 1440 | 1.4252 | | 1.392 | 2.0 | 2880 | 1.3534 | | 1.2814 | 3.0 | 4320 | 1.3246 | | 1.22 | 4.0 | 5760 | 1.3164 | | 1.1829 | 5.0 | 7200 | 1.3215 | ### Framework versions - Transformers 4.56.0 - Pytorch 2.8.0+cu126 - Datasets 4.0.0 - Tokenizers 0.22.0