beamaia commited on
Commit
4ccd466
·
verified ·
1 Parent(s): f512bab

Model save

Browse files
Files changed (1) hide show
  1. README.md +56 -61
README.md CHANGED
@@ -1,90 +1,85 @@
1
  ---
2
  license: mit
3
- library_name: "trl"
4
  tags:
5
- - KTO
6
- - WeniGPT
 
7
  base_model: HuggingFaceH4/zephyr-7b-beta
8
  model-index:
9
- - name: Weni/WeniGPT-QA-Zephyr-7B-4.0.2-KTO
10
  results: []
11
- language: ['pt']
12
  ---
13
 
14
- # Weni/WeniGPT-QA-Zephyr-7B-4.0.2-KTO
 
15
 
16
- This model is a fine-tuned version of [HuggingFaceH4/zephyr-7b-beta] on the dataset Weni/WeniGPT-QA-Binarized-1.2.0 with the KTO trainer. It is part of the WeniGPT project for [Weni](https://weni.ai/).
17
 
 
18
  It achieves the following results on the evaluation set:
19
- {'eval_loss': 0.01734423078596592, 'eval_runtime': 33.4092, 'eval_samples_per_second': 14.008, 'eval_steps_per_second': 0.898, 'epoch': 2.91}
 
 
 
 
 
 
20
 
21
- ## Intended uses & limitations
22
-
23
- This model has not been trained to avoid specific intructions.
24
-
25
- ## Training procedure
26
-
27
- Finetuning was done on the model HuggingFaceH4/zephyr-7b-beta with the following prompt:
28
-
29
- ```
30
- ---------------------
31
- Question:
32
- <|system|>
33
- Você é um médico tratando um paciente com amnésia. Para responder as perguntas do paciente, você irá ler um texto anteriormente para se contextualizar. Se você trouxer informações desconhecidas, fora do texto lido, poderá deixar o paciente confuso. Se o paciente fizer uma questão sobre informações não presentes no texto, você precisa responder de forma educada que você não tem informação suficiente para responder, pois se tentar responder, pode trazer informações que não ajudarão o paciente recuperar sua memória. Lembre, se não estiver no texto, você precisa responder de forma educada que você não tem informação suficiente para responder. Precisamos ajudar o paciente.
34
- <|user|>
35
- Contexto: {context}
36
-
37
- Questão: {question}</s>
38
- <|assistant|>
39
 
 
40
 
 
41
 
42
- ---------------------
43
- Response:
44
- {response}</s>
45
 
 
46
 
47
- ---------------------
48
 
49
- ```
50
 
51
  ### Training hyperparameters
52
 
53
  The following hyperparameters were used during training:
54
  - learning_rate: 0.0002
55
- - per_device_train_batch_size: 4
56
- - per_device_eval_batch_size: 2
 
57
  - gradient_accumulation_steps: 8
58
- - num_gpus: 8
59
- - total_train_batch_size: 256
60
- - optimizer: AdamW
61
- - lr_scheduler_type: cosine
62
- - num_steps: 48
63
- - quantization_type: bitsandbytes
64
- - LoRA: ("\n - bits: 4\n - use_exllama: True\n - device_map: auto\n - use_cache: False\n - lora_r: 16\n - lora_alpha: 32\n - lora_dropout: 0.05\n - bias: none\n - target_modules: ['q_proj', 'k_proj', 'v_proj', 'o_proj']\n - task_type: CAUSAL_LM",)
65
 
66
  ### Training results
67
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
68
  ### Framework versions
69
 
70
- - transformers==4.39.1
71
- - datasets==2.18.0
72
- - peft==0.10.0
73
- - safetensors==0.4.2
74
- - evaluate==0.4.1
75
- - bitsandbytes==0.43
76
- - huggingface_hub==0.20.3
77
- - seqeval==1.2.2
78
- - optimum==1.17.1
79
- - auto-gptq==0.7.1
80
- - gpustat==1.1.1
81
- - deepspeed==0.14.0
82
- - wandb==0.16.3
83
- - trl==0.8.1
84
- - accelerate==0.28.0
85
- - coloredlogs==15.0.1
86
- - traitlets==5.14.1
87
- - autoawq@https://github.com/casper-hansen/AutoAWQ/releases/download/v0.2.0/autoawq-0.2.0+cu118-cp310-cp310-linux_x86_64.whl
88
-
89
- ### Hardware
90
- - Cloud provided: runpod.io
 
1
  ---
2
  license: mit
3
+ library_name: peft
4
  tags:
5
+ - trl
6
+ - kto
7
+ - generated_from_trainer
8
  base_model: HuggingFaceH4/zephyr-7b-beta
9
  model-index:
10
+ - name: WeniGPT-QA-Zephyr-7B-4.0.2-KTO
11
  results: []
 
12
  ---
13
 
14
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
15
+ should probably proofread and complete it, then remove this comment. -->
16
 
17
+ # WeniGPT-QA-Zephyr-7B-4.0.2-KTO
18
 
19
+ This model is a fine-tuned version of [HuggingFaceH4/zephyr-7b-beta](https://huggingface.co/HuggingFaceH4/zephyr-7b-beta) on the None dataset.
20
  It achieves the following results on the evaluation set:
21
+ - Loss: 0.0052
22
+ - Rewards/chosen: 6.8557
23
+ - Rewards/rejected: -40.2341
24
+ - Rewards/margins: 47.0897
25
+ - Kl: 0.0
26
+ - Logps/chosen: -138.8257
27
+ - Logps/rejected: -603.3300
28
 
29
+ ## Model description
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
30
 
31
+ More information needed
32
 
33
+ ## Intended uses & limitations
34
 
35
+ More information needed
 
 
36
 
37
+ ## Training and evaluation data
38
 
39
+ More information needed
40
 
41
+ ## Training procedure
42
 
43
  ### Training hyperparameters
44
 
45
  The following hyperparameters were used during training:
46
  - learning_rate: 0.0002
47
+ - train_batch_size: 4
48
+ - eval_batch_size: 4
49
+ - seed: 42
50
  - gradient_accumulation_steps: 8
51
+ - total_train_batch_size: 32
52
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
53
+ - lr_scheduler_type: linear
54
+ - lr_scheduler_warmup_ratio: 0.03
55
+ - training_steps: 786
56
+ - mixed_precision_training: Native AMP
 
57
 
58
  ### Training results
59
 
60
+ | Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/margins | Kl | Logps/chosen | Logps/rejected |
61
+ |:-------------:|:-----:|:----:|:---------------:|:--------------:|:----------------:|:---------------:|:---:|:------------:|:--------------:|
62
+ | 0.1911 | 0.38 | 50 | 0.0198 | 5.0250 | -23.0117 | 28.0367 | 0.0 | -157.1321 | -431.1063 |
63
+ | 0.0525 | 0.76 | 100 | 0.0155 | 5.6300 | -30.1143 | 35.7443 | 0.0 | -151.0826 | -502.1325 |
64
+ | 0.0684 | 1.14 | 150 | 0.0104 | 6.1959 | -32.9347 | 39.1306 | 0.0 | -145.4235 | -530.3358 |
65
+ | 0.0253 | 1.52 | 200 | 0.0126 | 5.9530 | -28.8204 | 34.7734 | 0.0 | -147.8525 | -489.1933 |
66
+ | 0.0177 | 1.9 | 250 | 0.0163 | 6.4453 | -53.9510 | 60.3963 | 0.0 | -142.9294 | -740.4993 |
67
+ | 0.0126 | 2.28 | 300 | 0.0206 | 6.2002 | -65.0484 | 71.2486 | 0.0 | -145.3807 | -851.4736 |
68
+ | 0.007 | 2.66 | 350 | 0.0068 | 6.6872 | -41.5169 | 48.2041 | 0.0 | -140.5102 | -616.1578 |
69
+ | 0.0085 | 3.04 | 400 | 0.0076 | 6.7677 | -52.6223 | 59.3899 | 0.0 | -139.7057 | -727.2117 |
70
+ | 0.0057 | 3.43 | 450 | 0.0060 | 6.5419 | -38.1888 | 44.7308 | 0.0 | -141.9630 | -582.8775 |
71
+ | 0.0029 | 3.81 | 500 | 0.0061 | 6.7190 | -37.0418 | 43.7608 | 0.0 | -140.1928 | -571.4076 |
72
+ | 0.003 | 4.19 | 550 | 0.0062 | 6.8462 | -36.6584 | 43.5045 | 0.0 | -138.9207 | -567.5727 |
73
+ | 0.0023 | 4.57 | 600 | 0.0058 | 6.8631 | -38.2151 | 45.0782 | 0.0 | -138.7514 | -583.1401 |
74
+ | 0.0028 | 4.95 | 650 | 0.0050 | 6.8261 | -40.4010 | 47.2271 | 0.0 | -139.1210 | -604.9990 |
75
+ | 0.0029 | 5.33 | 700 | 0.0052 | 6.8557 | -40.2341 | 47.0897 | 0.0 | -138.8257 | -603.3300 |
76
+ | 0.0022 | 5.71 | 750 | 0.0052 | 6.8628 | -40.4610 | 47.3239 | 0.0 | -138.7541 | -605.5995 |
77
+
78
+
79
  ### Framework versions
80
 
81
+ - PEFT 0.10.0
82
+ - Transformers 4.39.1
83
+ - Pytorch 2.1.0+cu118
84
+ - Datasets 2.18.0
85
+ - Tokenizers 0.15.2