--- license: other tags: - axolotl - generated_from_trainer base_model: mistralai/Mistral-7B-v0.1 datasets: - allenai/ai2_arc - camel-ai/physics - camel-ai/chemistry - camel-ai/biology - metaeval/reclor - openbookqa - mandyyyyii/scibench - derek-thomas/ScienceQA - wenhu/TheoremQA - TIGER-Lab/ScienceEval --- ![image/jpeg](https://cdn-uploads.huggingface.co/production/uploads/6468ce47e134d050a58aa89c/uvfa4GVWrnd8SS6yBxRJZ.jpeg) # 🔬 Einstein-7B This model is a fine-tuned version of [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) on datasets related to science. This model is fine-tuned using [QLoRa](https://arxiv.org/abs/2305.14314) and [axolotl](https://github.com/OpenAccess-AI-Collective/axolotl). This model's training was sponsored by [sablo.ai](https://sablo.ai).
See axolotl config axolotl version: `0.3.0` ```yaml base_model: mistralai/Mistral-7B-v0.1 model_type: MistralForCausalLM tokenizer_type: LlamaTokenizer is_mistral_derived_model: true load_in_8bit: false load_in_4bit: true strict: false datasets: - path: sci-datasets/arc_challange_train_alpaca.json ds_type: json type: alpaca - path: sci-datasets/camelai_biology_alpaca.json ds_type: json type: alpaca - path: sci-datasets/camelai_chemistry_alpaca.json ds_type: json type: alpaca - path: sci-datasets/camelai_physics_alpaca.json ds_type: json type: alpaca - path: sci-datasets/openbookqa_alpaca.json ds_type: json type: alpaca - path: sci-datasets/reclor_science_alpaca.json ds_type: json type: alpaca - path: sci-datasets/scibench_alpaca.json ds_type: json type: alpaca - path: sci-datasets/scienceqa_alpaca.json ds_type: json type: alpaca - path: sci-datasets/theoremqa_alpaca.json ds_type: json type: alpaca - path: sci-datasets/tiger_scienceeval_alpaca.json ds_type: json type: alpaca dataset_prepared_path: last_run_prepared val_set_size: 0 output_dir: ./science-mistral adapter: qlora lora_model_dir: sequence_len: 8192 sample_packing: true pad_to_sequence_len: true lora_r: 128 lora_alpha: 64 lora_dropout: 0.05 lora_target_linear: true lora_fan_in_fan_out: lora_target_modules: - gate_proj - down_proj - up_proj - q_proj - v_proj - k_proj - o_proj wandb_project: huggingface wandb_entity: wandb_watch: wandb_name: wandb_log_model: hub_model_id: Weyaxi/science-mistral # change # gradient_accumulation_steps: 12 micro_batch_size: 6 num_epochs: 2 optimizer: adamw_bnb_8bit lr_scheduler: cosine learning_rate: 0.0002 # change # train_on_inputs: false group_by_length: false bf16: true fp16: false tf32: false gradient_checkpointing: true early_stopping_patience: resume_from_checkpoint: local_rank: logging_steps: 1 xformers_attention: flash_attention: true warmup_steps: 10 saves_per_epoch: 3 debug: deepspeed: weight_decay: 0.1 fsdp: fsdp_config: special_tokens: bos_token: "" eos_token: "" unk_token: "" ```

# 📊 Datasets Following datasets were used in this model: - [ARC](https://huggingface.co/datasets/allenai/ai2_arc) (Note: Only **train** part) - [camel-ai/physics](https://huggingface.co/datasets/camel-ai/physics) - [camel-ai/chemistry](https://huggingface.co/datasets/camel-ai/chemistry) - [camel-ai/biology](https://huggingface.co/datasets/camel-ai/biology) - [openbookqa](https://huggingface.co/datasets/openbookqa) - [reclor](https://huggingface.co/datasets/metaeval/reclor) - [scibench](https://github.com/mandyyyyii/scibench) - [ScienceQA](https://huggingface.co/datasets/derek-thomas/ScienceQA) - [TheoremQA](https://huggingface.co/datasets/wenhu/TheoremQA) - [ScienceEval](https://huggingface.co/datasets/TIGER-Lab/ScienceEval) # 💬 Prompt Template You can use this prompt template while using the model: ### Alpaca ``` Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request. ### Instruction: {instruction} ### Input: {input} ### Response: ``` # 🤝 Acknowledgments Thanks to Platypus for providing scripts to convert some of the datasets to Alpaca format: [Platypus/data_pipeline](https://github.com/arielnlee/Platypus/tree/main/data_pipeline) Thanks to all the dataset authors mentioned in the datasets section. Thanks to [axolotl](https://github.com/OpenAccess-AI-Collective/axolotl) for making the repository I used to make this model. [Built with Axolotl](https://github.com/OpenAccess-AI-Collective/axolotl) If you would like to support me: [☕ Buy Me a Coffee](https://www.buymeacoffee.com/weyaxi)