Text Generation
Transformers
TensorBoard
Safetensors
English
qwen2
Generated from Trainer
conversational
text-generation-inference
Nicolas-BZRD commited on
Commit
ee43e7c
·
verified ·
1 Parent(s): 81ba35d

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +85 -94
README.md CHANGED
@@ -2,112 +2,103 @@
2
  library_name: transformers
3
  tags:
4
  - generated_from_trainer
5
- model-index:
6
- - name: lustre/fswork/projects/rech/dgo/udv55np/math/Qwen3-235B-A22B/Qwen2.5-0.5B_reasoning/1
7
- results: []
 
 
 
8
  ---
9
 
10
- <!-- This model card has been generated automatically according to the information the Trainer had access to. You
11
- should probably proofread and complete it, then remove this comment. -->
12
-
13
- [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
14
- <details><summary>See axolotl config</summary>
15
 
16
- axolotl version: `0.12.2`
17
- ```yaml
18
- base_model: /lustre/fswork/projects/rech/qwv/udv55np/Qwen/Qwen2.5-0.5B_reasoning
19
 
20
- datasets:
21
- - path: /lustre/fswork/projects/rech/qwv/udv55np/dataset/math/hf/thinking_text/generator/default-68225543a18d39ac/0.0.0
22
- type: "chat_template"
23
- field_messages: "conversations"
24
- dataset_prepared_path: /lustre/fsn1/projects/rech/dgo/udv55np/dataset_math/Qwen3-235B-A22B/1
25
 
26
- chat_template: qwen_25
27
 
28
- shuffle_merged_datasets: true
29
- output_dir: /lustre/fswork/projects/rech/dgo/udv55np/math/Qwen3-235B-A22B/Qwen2.5-0.5B_reasoning/1
30
 
31
- sequence_len: 16384
32
- sample_packing: true
33
 
34
- gradient_accumulation_steps: 1
35
- micro_batch_size: 1
36
- num_epochs: 1
37
- auto_resume_from_checkpoints: true
38
 
39
- optimizer: adamw_torch_fused
40
- lr_scheduler: warmup_stable_decay
41
- learning_rate: 2e-5
42
- lr_scheduler_kwargs:
43
- num_decay_steps: 300
44
- min_lr_ratio: 0.1
45
- warmup_steps: 150
46
 
47
- bf16: true
48
- tf32: false
 
49
 
50
- gradient_checkpointing: true
51
- logging_steps: 10
52
- flash_attention: true
53
 
54
- evals_per_epoch: 0
55
- save_steps: 0.2
56
- save_total_limit: 20
57
- save_only_model: false
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
58
 
59
- use_tensorboard: true
60
- deepspeed: /lustre/fswork/projects/rech/qwv/udv55np/axolotl/zero3.json
61
- special_tokens:
62
- bos_token: "<|im_start|>"
63
- eos_token: "<|im_end|>"
64
- pad_token: "<|endoftext|>"
65
 
 
 
 
 
 
 
 
 
 
 
 
 
66
  ```
67
-
68
- </details><br>
69
-
70
- # lustre/fswork/projects/rech/dgo/udv55np/math/Qwen3-235B-A22B/Qwen2.5-0.5B_reasoning/1
71
-
72
- This model was trained from scratch on the None dataset.
73
-
74
- ## Model description
75
-
76
- More information needed
77
-
78
- ## Intended uses & limitations
79
-
80
- More information needed
81
-
82
- ## Training and evaluation data
83
-
84
- More information needed
85
-
86
- ## Training procedure
87
-
88
- ### Training hyperparameters
89
-
90
- The following hyperparameters were used during training:
91
- - learning_rate: 2e-05
92
- - train_batch_size: 1
93
- - eval_batch_size: 1
94
- - seed: 42
95
- - distributed_type: multi-GPU
96
- - num_devices: 16
97
- - total_train_batch_size: 16
98
- - total_eval_batch_size: 16
99
- - optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
100
- - lr_scheduler_type: warmup_stable_decay
101
- - lr_scheduler_warmup_steps: 150
102
- - training_steps: 9770
103
-
104
- ### Training results
105
-
106
-
107
-
108
- ### Framework versions
109
-
110
- - Transformers 4.55.2
111
- - Pytorch 2.6.0+cu124
112
- - Datasets 4.0.0
113
- - Tokenizers 0.21.1
 
2
  library_name: transformers
3
  tags:
4
  - generated_from_trainer
5
+ datasets:
6
+ - When-Does-Reasoning-Matter/general-reasoning-ift-pairs
7
+ - When-Does-Reasoning-Matter/math-reasoning-ift-pairs
8
+ language:
9
+ - en
10
+ pipeline_tag: text-generation
11
  ---
12
 
13
+ # When Does Reasoning Matter?
 
 
 
 
14
 
15
+ <p align="left">
16
+ <img src="https://cdn-avatars.huggingface.co/v1/production/uploads/62be186a5f59ff2320e6e32b/GjJ15tY7-F4bqR96FN4pd.png" alt="Dataset Icon" width="180"/>
17
+ </p>
18
 
19
+ <p align="left">
20
+ <a href="https://arxiv.org/pdf/2509.22193" target="_blank" rel="noopener noreferrer">
21
+ <img src="https://img.shields.io/badge/arXiv-2509.22193-b31b1b.svg?style=for-the-badge" alt="arXiv:2509.22193" />
22
+ </a>
23
+ </p>
24
 
 
25
 
26
+ This model was trained as part of the paper [When Does Reasoning Matter?](https://arxiv.org/pdf/2509.22193)
27
+ It belongs to a collection of **General and Math-specific student models** distilled from Instruction-Fine-Tuned (IFT) or Reasoning answers generated by [Qwen/Qwen3-235B-A22B](https://huggingface.co/Qwen/Qwen3-235B-A22B).
28
 
29
+ <img src="https://huggingface.co/api/resolve-cache/models/When-Does-Reasoning-Matter/Qwen2.5-0.5B-ift/733797fee2fdd300e1a0453d368250327fe4cc44/results.png?%2FWhen-Does-Reasoning-Matter%2FQwen2.5-0.5B-ift%2Fresolve%2Fmain%2Fresults.png=&etag=%22d36dedfbca764a8ac9a7a5ebc043ca53f5ee4966%22" alt="results" width="600"/>
 
30
 
31
+ ---
 
 
 
32
 
33
+ ## Datasets
 
 
 
 
 
 
34
 
35
+ These models were trained on the **largest set of IFT and Reasoning answer pairs**:
36
+ - **General dataset**: [general-reasoning-ift-pairs](https://huggingface.co/datasets/When-Does-Reasoning-Matter/general-reasoning-ift-pairs)
37
+ - **Math dataset**: [math-reasoning-ift-pairs](https://huggingface.co/datasets/When-Does-Reasoning-Matter/math-reasoning-ift-pairs)
38
 
39
+ ---
 
 
40
 
41
+ ## Available Models
42
+
43
+ <table>
44
+ <thead>
45
+ <tr>
46
+ <th colspan="2">General</th>
47
+ <th colspan="2">Math</th>
48
+ </tr>
49
+ <tr>
50
+ <th>IFT Models</th>
51
+ <th>Reasoning Models</th>
52
+ <th>IFT Models</th>
53
+ <th>Reasoning Models</th>
54
+ </tr>
55
+ </thead>
56
+ <tbody>
57
+ <tr>
58
+ <td><a href="https://huggingface.co/When-Does-Reasoning-Matter/Qwen2.5-0.5B-ift">Qwen2.5-0.5B-ift</a></td>
59
+ <td><a href="https://huggingface.co/When-Does-Reasoning-Matter/Qwen2.5-0.5B-reasoning">Qwen2.5-0.5B-reasoning</a></td>
60
+ <td><a href="https://huggingface.co/When-Does-Reasoning-Matter/Qwen2.5-0.5B-math-ift">Qwen2.5-0.5B-math-ift</a></td>
61
+ <td><a href="https://huggingface.co/When-Does-Reasoning-Matter/Qwen2.5-0.5B-math-reasoning">Qwen2.5-0.5B-math-reasoning</a></td>
62
+ </tr>
63
+ <tr>
64
+ <td><a href="https://huggingface.co/When-Does-Reasoning-Matter/Qwen2.5-1.5B-ift">Qwen2.5-1.5B-ift</a></td>
65
+ <td><a href="https://huggingface.co/When-Does-Reasoning-Matter/Qwen2.5-1.5B-reasoning">Qwen2.5-1.5B-reasoning</a></td>
66
+ <td><a href="https://huggingface.co/When-Does-Reasoning-Matter/Qwen2.5-1.5B-math-ift">Qwen2.5-1.5B-math-ift</a></td>
67
+ <td><a href="https://huggingface.co/When-Does-Reasoning-Matter/Qwen2.5-1.5B-math-reasoning">Qwen2.5-1.5B-math-reasoning</a></td>
68
+ </tr>
69
+ <tr>
70
+ <td><a href="https://huggingface.co/When-Does-Reasoning-Matter/Qwen2.5-3B-ift">Qwen2.5-3B-ift</a></td>
71
+ <td><a href="https://huggingface.co/When-Does-Reasoning-Matter/Qwen2.5-3B-reasoning">Qwen2.5-3B-reasoning</a></td>
72
+ <td><a href="https://huggingface.co/When-Does-Reasoning-Matter/Qwen2.5-3B-math-ift">Qwen2.5-3B-math-ift</a></td>
73
+ <td><a href="https://huggingface.co/When-Does-Reasoning-Matter/Qwen2.5-3B-math-reasoning">Qwen2.5-3B-math-reasoning</a></td>
74
+ </tr>
75
+ <tr>
76
+ <td><a href="https://huggingface.co/When-Does-Reasoning-Matter/Qwen2.5-7B-ift">Qwen2.5-7B-ift</a></td>
77
+ <td><a href="https://huggingface.co/When-Does-Reasoning-Matter/Qwen2.5-7B-reasoning">Qwen2.5-7B-reasoning</a></td>
78
+ <td><a href="https://huggingface.co/When-Does-Reasoning-Matter/Qwen2.5-7B-math-ift">Qwen2.5-7B-math-ift</a></td>
79
+ <td><a href="https://huggingface.co/When-Does-Reasoning-Matter/Qwen2.5-7B-math-reasoning">Qwen2.5-7B-math-reasoning</a></td>
80
+ </tr>
81
+ <tr>
82
+ <td><a href="https://huggingface.co/When-Does-Reasoning-Matter/Qwen2.5-14B-ift">Qwen2.5-14B-ift</a></td>
83
+ <td><a href="https://huggingface.co/When-Does-Reasoning-Matter/Qwen2.5-14B-reasoning">Qwen2.5-14B-reasoning</a></td>
84
+ <td><a href="https://huggingface.co/When-Does-Reasoning-Matter/Qwen2.5-14B-math-ift">Qwen2.5-14B-math-ift</a></td>
85
+ <td><a href="https://huggingface.co/When-Does-Reasoning-Matter/Qwen2.5-14B-math-reasoning">Qwen2.5-14B-math-reasoning</a></td>
86
+ </tr>
87
+ </tbody>
88
+ </table>
89
 
90
+ ---
 
 
 
 
 
91
 
92
+ If you use this dataset in your work, please cite: **[When Does Reasoning Matter?](https://arxiv.org/pdf/2509.22193)**
93
+
94
+ ```bibtex
95
+ @misc{boizard2025doesreasoningmattercontrolled,
96
+ title={When Does Reasoning Matter? A Controlled Study of Reasoning's Contribution to Model Performance},
97
+ author={Nicolas Boizard and Hippolyte Gisserot-Boukhlef and Kevin El-Haddad and Céline Hudelot and Pierre Colombo},
98
+ year={2025},
99
+ eprint={2509.22193},
100
+ archivePrefix={arXiv},
101
+ primaryClass={cs.CL},
102
+ url={https://arxiv.org/abs/2509.22193},
103
+ }
104
  ```