--- license: apache-2.0 base_model: jonatasgrosman/wav2vec2-large-xlsr-53-english tags: - generated_from_trainer metrics: - accuracy model-index: - name: wav2vec2-large-xlsr-53-english-finetuned-ravdess-v6 results: [] --- # wav2vec2-large-xlsr-53-english-finetuned-ravdess-v6 This model is a fine-tuned version of [jonatasgrosman/wav2vec2-large-xlsr-53-english](https://huggingface.co/jonatasgrosman/wav2vec2-large-xlsr-53-english) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.0166 - Accuracy: 0.625 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.08 | 0.15 | 25 | 2.0652 | 0.125 | | 2.057 | 0.31 | 50 | 2.0288 | 0.2083 | | 2.0031 | 0.46 | 75 | 2.0556 | 0.1667 | | 1.958 | 0.62 | 100 | 1.9128 | 0.2222 | | 1.726 | 0.77 | 125 | 1.7048 | 0.3681 | | 1.6563 | 0.93 | 150 | 1.6522 | 0.3542 | | 1.7092 | 1.08 | 175 | 1.7439 | 0.2986 | | 1.5645 | 1.23 | 200 | 1.5394 | 0.4236 | | 1.4945 | 1.39 | 225 | 1.3462 | 0.5069 | | 1.4193 | 1.54 | 250 | 1.3745 | 0.4514 | | 1.3488 | 1.7 | 275 | 1.2707 | 0.5208 | | 1.3205 | 1.85 | 300 | 1.3819 | 0.5278 | | 1.2814 | 2.01 | 325 | 1.2694 | 0.5556 | | 1.118 | 2.16 | 350 | 1.1216 | 0.5625 | | 1.0507 | 2.31 | 375 | 1.0795 | 0.6042 | | 0.9967 | 2.47 | 400 | 1.1243 | 0.5764 | | 0.9471 | 2.62 | 425 | 1.0740 | 0.6181 | | 0.8582 | 2.78 | 450 | 1.0422 | 0.5903 | | 0.9264 | 2.93 | 475 | 1.0178 | 0.625 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3