LLaMA-3.1-8B-AGNews-SFT / trainer_log.jsonl
Word2Li's picture
Upload folder using huggingface_hub
7cd5972 verified
{"current_steps": 1, "total_steps": 468, "loss": 7.3237, "learning_rate": 1.3333333333333334e-06, "epoch": 0.0021333333333333334, "percentage": 0.21, "elapsed_time": "0:00:14", "remaining_time": "1:49:18"}
{"current_steps": 2, "total_steps": 468, "loss": 7.1998, "learning_rate": 2.666666666666667e-06, "epoch": 0.004266666666666667, "percentage": 0.43, "elapsed_time": "0:00:19", "remaining_time": "1:15:54"}
{"current_steps": 3, "total_steps": 468, "loss": 7.036, "learning_rate": 4.000000000000001e-06, "epoch": 0.0064, "percentage": 0.64, "elapsed_time": "0:00:25", "remaining_time": "1:04:38"}
{"current_steps": 4, "total_steps": 468, "loss": 6.3763, "learning_rate": 5.333333333333334e-06, "epoch": 0.008533333333333334, "percentage": 0.85, "elapsed_time": "0:00:30", "remaining_time": "0:58:51"}
{"current_steps": 5, "total_steps": 468, "loss": 4.6166, "learning_rate": 6.666666666666667e-06, "epoch": 0.010666666666666666, "percentage": 1.07, "elapsed_time": "0:00:36", "remaining_time": "0:55:49"}
{"current_steps": 6, "total_steps": 468, "loss": 3.1298, "learning_rate": 8.000000000000001e-06, "epoch": 0.0128, "percentage": 1.28, "elapsed_time": "0:00:41", "remaining_time": "0:53:17"}
{"current_steps": 7, "total_steps": 468, "loss": 2.4499, "learning_rate": 9.333333333333334e-06, "epoch": 0.014933333333333333, "percentage": 1.5, "elapsed_time": "0:00:46", "remaining_time": "0:51:24"}
{"current_steps": 8, "total_steps": 468, "loss": 2.1396, "learning_rate": 1.0666666666666667e-05, "epoch": 0.017066666666666667, "percentage": 1.71, "elapsed_time": "0:00:52", "remaining_time": "0:50:00"}
{"current_steps": 9, "total_steps": 468, "loss": 2.1943, "learning_rate": 1.2e-05, "epoch": 0.0192, "percentage": 1.92, "elapsed_time": "0:00:57", "remaining_time": "0:48:51"}
{"current_steps": 10, "total_steps": 468, "loss": 2.0228, "learning_rate": 1.3333333333333333e-05, "epoch": 0.021333333333333333, "percentage": 2.14, "elapsed_time": "0:01:02", "remaining_time": "0:47:54"}
{"current_steps": 11, "total_steps": 468, "loss": 1.8804, "learning_rate": 1.4666666666666666e-05, "epoch": 0.023466666666666667, "percentage": 2.35, "elapsed_time": "0:01:08", "remaining_time": "0:47:07"}
{"current_steps": 12, "total_steps": 468, "loss": 1.8405, "learning_rate": 1.6000000000000003e-05, "epoch": 0.0256, "percentage": 2.56, "elapsed_time": "0:01:13", "remaining_time": "0:46:27"}
{"current_steps": 13, "total_steps": 468, "loss": 1.6634, "learning_rate": 1.7333333333333336e-05, "epoch": 0.027733333333333332, "percentage": 2.78, "elapsed_time": "0:01:18", "remaining_time": "0:45:52"}
{"current_steps": 14, "total_steps": 468, "loss": 1.585, "learning_rate": 1.866666666666667e-05, "epoch": 0.029866666666666666, "percentage": 2.99, "elapsed_time": "0:01:23", "remaining_time": "0:45:22"}
{"current_steps": 15, "total_steps": 468, "loss": 1.5327, "learning_rate": 2e-05, "epoch": 0.032, "percentage": 3.21, "elapsed_time": "0:01:29", "remaining_time": "0:44:55"}
{"current_steps": 16, "total_steps": 468, "loss": 1.6873, "learning_rate": 1.9999759524074374e-05, "epoch": 0.034133333333333335, "percentage": 3.42, "elapsed_time": "0:01:34", "remaining_time": "0:44:30"}
{"current_steps": 17, "total_steps": 468, "loss": 2.1603, "learning_rate": 1.999903810786324e-05, "epoch": 0.03626666666666667, "percentage": 3.63, "elapsed_time": "0:01:39", "remaining_time": "0:44:07"}
{"current_steps": 18, "total_steps": 468, "loss": 1.5881, "learning_rate": 1.999783578606323e-05, "epoch": 0.0384, "percentage": 3.85, "elapsed_time": "0:01:45", "remaining_time": "0:43:47"}
{"current_steps": 19, "total_steps": 468, "loss": 3.0391, "learning_rate": 1.9996152616500244e-05, "epoch": 0.04053333333333333, "percentage": 4.06, "elapsed_time": "0:01:50", "remaining_time": "0:43:28"}
{"current_steps": 20, "total_steps": 468, "loss": 2.35, "learning_rate": 1.999398868012663e-05, "epoch": 0.042666666666666665, "percentage": 4.27, "elapsed_time": "0:01:55", "remaining_time": "0:43:10"}
{"current_steps": 21, "total_steps": 468, "loss": 1.385, "learning_rate": 1.9991344081017312e-05, "epoch": 0.0448, "percentage": 4.49, "elapsed_time": "0:02:00", "remaining_time": "0:42:53"}
{"current_steps": 22, "total_steps": 468, "loss": 2.4298, "learning_rate": 1.998821894636477e-05, "epoch": 0.046933333333333334, "percentage": 4.7, "elapsed_time": "0:02:06", "remaining_time": "0:42:38"}
{"current_steps": 23, "total_steps": 468, "loss": 1.1715, "learning_rate": 1.9984613426472934e-05, "epoch": 0.04906666666666667, "percentage": 4.91, "elapsed_time": "0:02:11", "remaining_time": "0:42:23"}
{"current_steps": 24, "total_steps": 468, "loss": 1.0305, "learning_rate": 1.9980527694749952e-05, "epoch": 0.0512, "percentage": 5.13, "elapsed_time": "0:02:16", "remaining_time": "0:42:09"}
{"current_steps": 25, "total_steps": 468, "loss": 0.8896, "learning_rate": 1.9975961947699848e-05, "epoch": 0.05333333333333334, "percentage": 5.34, "elapsed_time": "0:02:21", "remaining_time": "0:41:56"}
{"current_steps": 26, "total_steps": 468, "loss": 1.3138, "learning_rate": 1.9970916404913068e-05, "epoch": 0.055466666666666664, "percentage": 5.56, "elapsed_time": "0:02:27", "remaining_time": "0:41:43"}
{"current_steps": 27, "total_steps": 468, "loss": 0.7626, "learning_rate": 1.996539130905593e-05, "epoch": 0.0576, "percentage": 5.77, "elapsed_time": "0:02:32", "remaining_time": "0:41:30"}
{"current_steps": 28, "total_steps": 468, "loss": 0.6847, "learning_rate": 1.9959386925858944e-05, "epoch": 0.05973333333333333, "percentage": 5.98, "elapsed_time": "0:02:37", "remaining_time": "0:41:19"}
{"current_steps": 29, "total_steps": 468, "loss": 0.5946, "learning_rate": 1.9952903544104026e-05, "epoch": 0.06186666666666667, "percentage": 6.2, "elapsed_time": "0:02:43", "remaining_time": "0:41:08"}
{"current_steps": 30, "total_steps": 468, "loss": 0.5467, "learning_rate": 1.9945941475610623e-05, "epoch": 0.064, "percentage": 6.41, "elapsed_time": "0:02:48", "remaining_time": "0:40:58"}
{"current_steps": 31, "total_steps": 468, "loss": 0.4314, "learning_rate": 1.9938501055220712e-05, "epoch": 0.06613333333333334, "percentage": 6.62, "elapsed_time": "0:02:53", "remaining_time": "0:40:48"}
{"current_steps": 32, "total_steps": 468, "loss": 0.3731, "learning_rate": 1.9930582640782684e-05, "epoch": 0.06826666666666667, "percentage": 6.84, "elapsed_time": "0:02:59", "remaining_time": "0:40:40"}
{"current_steps": 33, "total_steps": 468, "loss": 0.3163, "learning_rate": 1.9922186613134152e-05, "epoch": 0.0704, "percentage": 7.05, "elapsed_time": "0:03:04", "remaining_time": "0:40:30"}
{"current_steps": 34, "total_steps": 468, "loss": 0.2417, "learning_rate": 1.9913313376083615e-05, "epoch": 0.07253333333333334, "percentage": 7.26, "elapsed_time": "0:03:09", "remaining_time": "0:40:21"}
{"current_steps": 35, "total_steps": 468, "loss": 0.2095, "learning_rate": 1.9903963356391057e-05, "epoch": 0.07466666666666667, "percentage": 7.48, "elapsed_time": "0:03:15", "remaining_time": "0:40:14"}
{"current_steps": 36, "total_steps": 468, "loss": 0.1806, "learning_rate": 1.9894137003747404e-05, "epoch": 0.0768, "percentage": 7.69, "elapsed_time": "0:03:20", "remaining_time": "0:40:05"}
{"current_steps": 37, "total_steps": 468, "loss": 0.1429, "learning_rate": 1.9883834790752904e-05, "epoch": 0.07893333333333333, "percentage": 7.91, "elapsed_time": "0:03:25", "remaining_time": "0:39:57"}
{"current_steps": 38, "total_steps": 468, "loss": 0.1052, "learning_rate": 1.98730572128944e-05, "epoch": 0.08106666666666666, "percentage": 8.12, "elapsed_time": "0:03:31", "remaining_time": "0:39:50"}
{"current_steps": 39, "total_steps": 468, "loss": 0.0877, "learning_rate": 1.986180478852149e-05, "epoch": 0.0832, "percentage": 8.33, "elapsed_time": "0:03:36", "remaining_time": "0:39:43"}
{"current_steps": 40, "total_steps": 468, "loss": 0.1171, "learning_rate": 1.9850078058821615e-05, "epoch": 0.08533333333333333, "percentage": 8.55, "elapsed_time": "0:03:42", "remaining_time": "0:39:35"}
{"current_steps": 41, "total_steps": 468, "loss": 0.1014, "learning_rate": 1.9837877587794003e-05, "epoch": 0.08746666666666666, "percentage": 8.76, "elapsed_time": "0:03:47", "remaining_time": "0:39:28"}
{"current_steps": 42, "total_steps": 468, "loss": 0.0509, "learning_rate": 1.9825203962222573e-05, "epoch": 0.0896, "percentage": 8.97, "elapsed_time": "0:03:52", "remaining_time": "0:39:20"}
{"current_steps": 43, "total_steps": 468, "loss": 0.0976, "learning_rate": 1.9812057791647687e-05, "epoch": 0.09173333333333333, "percentage": 9.19, "elapsed_time": "0:03:58", "remaining_time": "0:39:13"}
{"current_steps": 44, "total_steps": 468, "loss": 0.0723, "learning_rate": 1.979843970833686e-05, "epoch": 0.09386666666666667, "percentage": 9.4, "elapsed_time": "0:04:03", "remaining_time": "0:39:05"}
{"current_steps": 45, "total_steps": 468, "loss": 0.0565, "learning_rate": 1.9784350367254322e-05, "epoch": 0.096, "percentage": 9.62, "elapsed_time": "0:04:08", "remaining_time": "0:38:58"}
{"current_steps": 46, "total_steps": 468, "loss": 0.0622, "learning_rate": 1.9769790446029543e-05, "epoch": 0.09813333333333334, "percentage": 9.83, "elapsed_time": "0:04:14", "remaining_time": "0:38:51"}
{"current_steps": 47, "total_steps": 468, "loss": 0.0994, "learning_rate": 1.9754760644924635e-05, "epoch": 0.10026666666666667, "percentage": 10.04, "elapsed_time": "0:04:19", "remaining_time": "0:38:44"}
{"current_steps": 48, "total_steps": 468, "loss": 0.0682, "learning_rate": 1.9739261686800662e-05, "epoch": 0.1024, "percentage": 10.26, "elapsed_time": "0:04:24", "remaining_time": "0:38:37"}
{"current_steps": 49, "total_steps": 468, "loss": 0.0703, "learning_rate": 1.9723294317082876e-05, "epoch": 0.10453333333333334, "percentage": 10.47, "elapsed_time": "0:04:30", "remaining_time": "0:38:30"}
{"current_steps": 50, "total_steps": 468, "loss": 0.0706, "learning_rate": 1.970685930372489e-05, "epoch": 0.10666666666666667, "percentage": 10.68, "elapsed_time": "0:04:35", "remaining_time": "0:38:23"}
{"current_steps": 51, "total_steps": 468, "loss": 0.0593, "learning_rate": 1.968995743717171e-05, "epoch": 0.1088, "percentage": 10.9, "elapsed_time": "0:04:40", "remaining_time": "0:38:15"}
{"current_steps": 52, "total_steps": 468, "loss": 0.0935, "learning_rate": 1.967258953032174e-05, "epoch": 0.11093333333333333, "percentage": 11.11, "elapsed_time": "0:04:46", "remaining_time": "0:38:09"}
{"current_steps": 53, "total_steps": 468, "loss": 0.0859, "learning_rate": 1.965475641848767e-05, "epoch": 0.11306666666666666, "percentage": 11.32, "elapsed_time": "0:04:51", "remaining_time": "0:38:03"}
{"current_steps": 54, "total_steps": 468, "loss": 0.0838, "learning_rate": 1.963645895935632e-05, "epoch": 0.1152, "percentage": 11.54, "elapsed_time": "0:04:56", "remaining_time": "0:37:56"}
{"current_steps": 55, "total_steps": 468, "loss": 0.0575, "learning_rate": 1.9617698032947364e-05, "epoch": 0.11733333333333333, "percentage": 11.75, "elapsed_time": "0:05:02", "remaining_time": "0:37:49"}
{"current_steps": 56, "total_steps": 468, "loss": 0.0494, "learning_rate": 1.9598474541571045e-05, "epoch": 0.11946666666666667, "percentage": 11.97, "elapsed_time": "0:05:07", "remaining_time": "0:37:42"}
{"current_steps": 57, "total_steps": 468, "loss": 0.059, "learning_rate": 1.9578789409784727e-05, "epoch": 0.1216, "percentage": 12.18, "elapsed_time": "0:05:12", "remaining_time": "0:37:36"}
{"current_steps": 58, "total_steps": 468, "loss": 0.0468, "learning_rate": 1.9558643584348478e-05, "epoch": 0.12373333333333333, "percentage": 12.39, "elapsed_time": "0:05:18", "remaining_time": "0:37:29"}
{"current_steps": 59, "total_steps": 468, "loss": 0.0277, "learning_rate": 1.9538038034179496e-05, "epoch": 0.12586666666666665, "percentage": 12.61, "elapsed_time": "0:05:23", "remaining_time": "0:37:23"}
{"current_steps": 60, "total_steps": 468, "loss": 0.0551, "learning_rate": 1.951697375030553e-05, "epoch": 0.128, "percentage": 12.82, "elapsed_time": "0:05:28", "remaining_time": "0:37:16"}
{"current_steps": 61, "total_steps": 468, "loss": 0.0583, "learning_rate": 1.949545174581722e-05, "epoch": 0.13013333333333332, "percentage": 13.03, "elapsed_time": "0:05:34", "remaining_time": "0:37:10"}
{"current_steps": 62, "total_steps": 468, "loss": 0.0552, "learning_rate": 1.9473473055819348e-05, "epoch": 0.13226666666666667, "percentage": 13.25, "elapsed_time": "0:05:39", "remaining_time": "0:37:03"}
{"current_steps": 63, "total_steps": 468, "loss": 0.0448, "learning_rate": 1.9451038737381078e-05, "epoch": 0.1344, "percentage": 13.46, "elapsed_time": "0:05:44", "remaining_time": "0:36:56"}
{"current_steps": 64, "total_steps": 468, "loss": 0.0701, "learning_rate": 1.9428149869485113e-05, "epoch": 0.13653333333333334, "percentage": 13.68, "elapsed_time": "0:05:50", "remaining_time": "0:36:50"}
{"current_steps": 65, "total_steps": 468, "loss": 0.0426, "learning_rate": 1.940480755297579e-05, "epoch": 0.13866666666666666, "percentage": 13.89, "elapsed_time": "0:05:55", "remaining_time": "0:36:43"}
{"current_steps": 66, "total_steps": 468, "loss": 0.0586, "learning_rate": 1.9381012910506146e-05, "epoch": 0.1408, "percentage": 14.1, "elapsed_time": "0:06:00", "remaining_time": "0:36:37"}
{"current_steps": 67, "total_steps": 468, "loss": 0.065, "learning_rate": 1.9356767086483908e-05, "epoch": 0.14293333333333333, "percentage": 14.32, "elapsed_time": "0:06:06", "remaining_time": "0:36:30"}
{"current_steps": 68, "total_steps": 468, "loss": 0.0585, "learning_rate": 1.9332071247016476e-05, "epoch": 0.14506666666666668, "percentage": 14.53, "elapsed_time": "0:06:11", "remaining_time": "0:36:24"}
{"current_steps": 69, "total_steps": 468, "loss": 0.0444, "learning_rate": 1.930692657985482e-05, "epoch": 0.1472, "percentage": 14.74, "elapsed_time": "0:06:16", "remaining_time": "0:36:17"}
{"current_steps": 70, "total_steps": 468, "loss": 0.0499, "learning_rate": 1.9281334294336364e-05, "epoch": 0.14933333333333335, "percentage": 14.96, "elapsed_time": "0:06:21", "remaining_time": "0:36:11"}
{"current_steps": 71, "total_steps": 468, "loss": 0.5615, "learning_rate": 1.9255295621326813e-05, "epoch": 0.15146666666666667, "percentage": 15.17, "elapsed_time": "0:06:27", "remaining_time": "0:36:05"}
{"current_steps": 72, "total_steps": 468, "loss": 0.0492, "learning_rate": 1.9228811813160972e-05, "epoch": 0.1536, "percentage": 15.38, "elapsed_time": "0:06:32", "remaining_time": "0:35:59"}
{"current_steps": 73, "total_steps": 468, "loss": 0.0416, "learning_rate": 1.9201884143582496e-05, "epoch": 0.15573333333333333, "percentage": 15.6, "elapsed_time": "0:06:38", "remaining_time": "0:35:53"}
{"current_steps": 74, "total_steps": 468, "loss": 0.0583, "learning_rate": 1.9174513907682634e-05, "epoch": 0.15786666666666666, "percentage": 15.81, "elapsed_time": "0:06:43", "remaining_time": "0:35:47"}
{"current_steps": 75, "total_steps": 468, "loss": 0.0522, "learning_rate": 1.9146702421837952e-05, "epoch": 0.16, "percentage": 16.03, "elapsed_time": "0:06:48", "remaining_time": "0:35:41"}
{"current_steps": 76, "total_steps": 468, "loss": 0.0509, "learning_rate": 1.9118451023647008e-05, "epoch": 0.16213333333333332, "percentage": 16.24, "elapsed_time": "0:06:54", "remaining_time": "0:35:35"}
{"current_steps": 77, "total_steps": 468, "loss": 0.0424, "learning_rate": 1.908976107186603e-05, "epoch": 0.16426666666666667, "percentage": 16.45, "elapsed_time": "0:06:59", "remaining_time": "0:35:29"}
{"current_steps": 78, "total_steps": 468, "loss": 0.0605, "learning_rate": 1.906063394634356e-05, "epoch": 0.1664, "percentage": 16.67, "elapsed_time": "0:07:04", "remaining_time": "0:35:23"}
{"current_steps": 79, "total_steps": 468, "loss": 0.0514, "learning_rate": 1.9031071047954095e-05, "epoch": 0.16853333333333334, "percentage": 16.88, "elapsed_time": "0:07:10", "remaining_time": "0:35:17"}
{"current_steps": 80, "total_steps": 468, "loss": 0.0526, "learning_rate": 1.90010737985307e-05, "epoch": 0.17066666666666666, "percentage": 17.09, "elapsed_time": "0:07:15", "remaining_time": "0:35:12"}
{"current_steps": 81, "total_steps": 468, "loss": 0.0565, "learning_rate": 1.8970643640796642e-05, "epoch": 0.1728, "percentage": 17.31, "elapsed_time": "0:07:20", "remaining_time": "0:35:05"}
{"current_steps": 82, "total_steps": 468, "loss": 0.0596, "learning_rate": 1.893978203829599e-05, "epoch": 0.17493333333333333, "percentage": 17.52, "elapsed_time": "0:07:26", "remaining_time": "0:34:59"}
{"current_steps": 83, "total_steps": 468, "loss": 0.0528, "learning_rate": 1.8908490475323234e-05, "epoch": 0.17706666666666668, "percentage": 17.74, "elapsed_time": "0:07:31", "remaining_time": "0:34:53"}
{"current_steps": 84, "total_steps": 468, "loss": 0.0285, "learning_rate": 1.887677045685188e-05, "epoch": 0.1792, "percentage": 17.95, "elapsed_time": "0:07:36", "remaining_time": "0:34:47"}
{"current_steps": 85, "total_steps": 468, "loss": 0.0575, "learning_rate": 1.8844623508462093e-05, "epoch": 0.18133333333333335, "percentage": 18.16, "elapsed_time": "0:07:42", "remaining_time": "0:34:41"}
{"current_steps": 86, "total_steps": 468, "loss": 0.0539, "learning_rate": 1.8812051176267307e-05, "epoch": 0.18346666666666667, "percentage": 18.38, "elapsed_time": "0:07:47", "remaining_time": "0:34:35"}
{"current_steps": 87, "total_steps": 468, "loss": 0.0343, "learning_rate": 1.877905502683987e-05, "epoch": 0.1856, "percentage": 18.59, "elapsed_time": "0:07:52", "remaining_time": "0:34:30"}
{"current_steps": 88, "total_steps": 468, "loss": 0.0438, "learning_rate": 1.8745636647135693e-05, "epoch": 0.18773333333333334, "percentage": 18.8, "elapsed_time": "0:07:58", "remaining_time": "0:34:24"}
{"current_steps": 89, "total_steps": 468, "loss": 0.0495, "learning_rate": 1.871179764441794e-05, "epoch": 0.18986666666666666, "percentage": 19.02, "elapsed_time": "0:08:03", "remaining_time": "0:34:18"}
{"current_steps": 90, "total_steps": 468, "loss": 0.0572, "learning_rate": 1.8677539646179706e-05, "epoch": 0.192, "percentage": 19.23, "elapsed_time": "0:08:08", "remaining_time": "0:34:12"}
{"current_steps": 91, "total_steps": 468, "loss": 0.049, "learning_rate": 1.8642864300065767e-05, "epoch": 0.19413333333333332, "percentage": 19.44, "elapsed_time": "0:08:13", "remaining_time": "0:34:05"}
{"current_steps": 92, "total_steps": 468, "loss": 0.0447, "learning_rate": 1.8607773273793298e-05, "epoch": 0.19626666666666667, "percentage": 19.66, "elapsed_time": "0:08:19", "remaining_time": "0:34:00"}
{"current_steps": 93, "total_steps": 468, "loss": 0.057, "learning_rate": 1.8572268255071718e-05, "epoch": 0.1984, "percentage": 19.87, "elapsed_time": "0:08:24", "remaining_time": "0:33:54"}
{"current_steps": 94, "total_steps": 468, "loss": 0.0391, "learning_rate": 1.853635095152147e-05, "epoch": 0.20053333333333334, "percentage": 20.09, "elapsed_time": "0:08:29", "remaining_time": "0:33:48"}
{"current_steps": 95, "total_steps": 468, "loss": 0.0377, "learning_rate": 1.8500023090591917e-05, "epoch": 0.20266666666666666, "percentage": 20.3, "elapsed_time": "0:08:35", "remaining_time": "0:33:42"}
{"current_steps": 96, "total_steps": 468, "loss": 0.0515, "learning_rate": 1.8463286419478256e-05, "epoch": 0.2048, "percentage": 20.51, "elapsed_time": "0:08:40", "remaining_time": "0:33:36"}
{"current_steps": 97, "total_steps": 468, "loss": 0.0422, "learning_rate": 1.8426142705037487e-05, "epoch": 0.20693333333333333, "percentage": 20.73, "elapsed_time": "0:08:45", "remaining_time": "0:33:29"}
{"current_steps": 98, "total_steps": 468, "loss": 0.0521, "learning_rate": 1.8388593733703428e-05, "epoch": 0.20906666666666668, "percentage": 20.94, "elapsed_time": "0:08:50", "remaining_time": "0:33:23"}
{"current_steps": 99, "total_steps": 468, "loss": 0.0602, "learning_rate": 1.8350641311400813e-05, "epoch": 0.2112, "percentage": 21.15, "elapsed_time": "0:08:56", "remaining_time": "0:33:17"}
{"current_steps": 100, "total_steps": 468, "loss": 0.0588, "learning_rate": 1.831228726345841e-05, "epoch": 0.21333333333333335, "percentage": 21.37, "elapsed_time": "0:09:01", "remaining_time": "0:33:11"}
{"current_steps": 101, "total_steps": 468, "loss": 0.0564, "learning_rate": 1.8273533434521262e-05, "epoch": 0.21546666666666667, "percentage": 21.58, "elapsed_time": "0:09:06", "remaining_time": "0:33:05"}
{"current_steps": 102, "total_steps": 468, "loss": 0.0506, "learning_rate": 1.8234381688461943e-05, "epoch": 0.2176, "percentage": 21.79, "elapsed_time": "0:09:11", "remaining_time": "0:33:00"}
{"current_steps": 103, "total_steps": 468, "loss": 0.044, "learning_rate": 1.8194833908290933e-05, "epoch": 0.21973333333333334, "percentage": 22.01, "elapsed_time": "0:09:17", "remaining_time": "0:32:54"}
{"current_steps": 104, "total_steps": 468, "loss": 0.059, "learning_rate": 1.815489199606603e-05, "epoch": 0.22186666666666666, "percentage": 22.22, "elapsed_time": "0:09:22", "remaining_time": "0:32:48"}
{"current_steps": 105, "total_steps": 468, "loss": 0.0476, "learning_rate": 1.8114557872800906e-05, "epoch": 0.224, "percentage": 22.44, "elapsed_time": "0:09:27", "remaining_time": "0:32:42"}
{"current_steps": 106, "total_steps": 468, "loss": 0.0314, "learning_rate": 1.8073833478372682e-05, "epoch": 0.22613333333333333, "percentage": 22.65, "elapsed_time": "0:09:33", "remaining_time": "0:32:36"}
{"current_steps": 107, "total_steps": 468, "loss": 0.0444, "learning_rate": 1.803272077142865e-05, "epoch": 0.22826666666666667, "percentage": 22.86, "elapsed_time": "0:09:38", "remaining_time": "0:32:31"}
{"current_steps": 108, "total_steps": 468, "loss": 0.0486, "learning_rate": 1.799122172929206e-05, "epoch": 0.2304, "percentage": 23.08, "elapsed_time": "0:09:43", "remaining_time": "0:32:25"}
{"current_steps": 109, "total_steps": 468, "loss": 0.0311, "learning_rate": 1.794933834786702e-05, "epoch": 0.23253333333333334, "percentage": 23.29, "elapsed_time": "0:09:48", "remaining_time": "0:32:19"}
{"current_steps": 110, "total_steps": 468, "loss": 0.0665, "learning_rate": 1.7907072641542527e-05, "epoch": 0.23466666666666666, "percentage": 23.5, "elapsed_time": "0:09:54", "remaining_time": "0:32:13"}
{"current_steps": 111, "total_steps": 468, "loss": 0.0351, "learning_rate": 1.7864426643095537e-05, "epoch": 0.2368, "percentage": 23.72, "elapsed_time": "0:09:59", "remaining_time": "0:32:08"}
{"current_steps": 112, "total_steps": 468, "loss": 0.0355, "learning_rate": 1.782140240359325e-05, "epoch": 0.23893333333333333, "percentage": 23.93, "elapsed_time": "0:10:04", "remaining_time": "0:32:02"}
{"current_steps": 113, "total_steps": 468, "loss": 0.0408, "learning_rate": 1.7778001992294426e-05, "epoch": 0.24106666666666668, "percentage": 24.15, "elapsed_time": "0:10:10", "remaining_time": "0:31:56"}
{"current_steps": 114, "total_steps": 468, "loss": 0.0477, "learning_rate": 1.773422749654988e-05, "epoch": 0.2432, "percentage": 24.36, "elapsed_time": "0:10:15", "remaining_time": "0:31:51"}
{"current_steps": 115, "total_steps": 468, "loss": 0.037, "learning_rate": 1.769008102170209e-05, "epoch": 0.24533333333333332, "percentage": 24.57, "elapsed_time": "0:10:20", "remaining_time": "0:31:45"}
{"current_steps": 116, "total_steps": 468, "loss": 0.0356, "learning_rate": 1.7645564690983936e-05, "epoch": 0.24746666666666667, "percentage": 24.79, "elapsed_time": "0:10:26", "remaining_time": "0:31:40"}
{"current_steps": 117, "total_steps": 468, "loss": 0.0397, "learning_rate": 1.7600680645416583e-05, "epoch": 0.2496, "percentage": 25.0, "elapsed_time": "0:10:31", "remaining_time": "0:31:35"}
{"current_steps": 118, "total_steps": 468, "loss": 0.0388, "learning_rate": 1.7555431043706517e-05, "epoch": 0.2517333333333333, "percentage": 25.21, "elapsed_time": "0:10:37", "remaining_time": "0:31:29"}
{"current_steps": 119, "total_steps": 468, "loss": 0.0447, "learning_rate": 1.7509818062141704e-05, "epoch": 0.2538666666666667, "percentage": 25.43, "elapsed_time": "0:10:42", "remaining_time": "0:31:23"}
{"current_steps": 120, "total_steps": 468, "loss": 0.0265, "learning_rate": 1.746384389448694e-05, "epoch": 0.256, "percentage": 25.64, "elapsed_time": "0:10:47", "remaining_time": "0:31:18"}
{"current_steps": 121, "total_steps": 468, "loss": 0.0571, "learning_rate": 1.7417510751878324e-05, "epoch": 0.2581333333333333, "percentage": 25.85, "elapsed_time": "0:10:53", "remaining_time": "0:31:12"}
{"current_steps": 122, "total_steps": 468, "loss": 0.0501, "learning_rate": 1.737082086271693e-05, "epoch": 0.26026666666666665, "percentage": 26.07, "elapsed_time": "0:10:58", "remaining_time": "0:31:07"}
{"current_steps": 123, "total_steps": 468, "loss": 0.0281, "learning_rate": 1.7323776472561625e-05, "epoch": 0.2624, "percentage": 26.28, "elapsed_time": "0:11:03", "remaining_time": "0:31:01"}
{"current_steps": 124, "total_steps": 468, "loss": 0.0354, "learning_rate": 1.727637984402106e-05, "epoch": 0.26453333333333334, "percentage": 26.5, "elapsed_time": "0:11:08", "remaining_time": "0:30:55"}
{"current_steps": 125, "total_steps": 468, "loss": 0.0301, "learning_rate": 1.7228633256644854e-05, "epoch": 0.26666666666666666, "percentage": 26.71, "elapsed_time": "0:11:14", "remaining_time": "0:30:49"}
{"current_steps": 126, "total_steps": 468, "loss": 0.042, "learning_rate": 1.7180539006813973e-05, "epoch": 0.2688, "percentage": 26.92, "elapsed_time": "0:11:19", "remaining_time": "0:30:44"}
{"current_steps": 127, "total_steps": 468, "loss": 0.0414, "learning_rate": 1.713209940763026e-05, "epoch": 0.27093333333333336, "percentage": 27.14, "elapsed_time": "0:11:24", "remaining_time": "0:30:38"}
{"current_steps": 128, "total_steps": 468, "loss": 0.0367, "learning_rate": 1.7083316788805212e-05, "epoch": 0.2730666666666667, "percentage": 27.35, "elapsed_time": "0:11:30", "remaining_time": "0:30:33"}
{"current_steps": 129, "total_steps": 468, "loss": 0.0384, "learning_rate": 1.7034193496547903e-05, "epoch": 0.2752, "percentage": 27.56, "elapsed_time": "0:11:35", "remaining_time": "0:30:27"}
{"current_steps": 130, "total_steps": 468, "loss": 0.0687, "learning_rate": 1.6984731893452174e-05, "epoch": 0.2773333333333333, "percentage": 27.78, "elapsed_time": "0:11:40", "remaining_time": "0:30:22"}
{"current_steps": 131, "total_steps": 468, "loss": 0.0506, "learning_rate": 1.6934934358382987e-05, "epoch": 0.27946666666666664, "percentage": 27.99, "elapsed_time": "0:11:46", "remaining_time": "0:30:16"}
{"current_steps": 132, "total_steps": 468, "loss": 0.0448, "learning_rate": 1.6884803286362e-05, "epoch": 0.2816, "percentage": 28.21, "elapsed_time": "0:11:51", "remaining_time": "0:30:10"}
{"current_steps": 133, "total_steps": 468, "loss": 0.0504, "learning_rate": 1.683434108845241e-05, "epoch": 0.28373333333333334, "percentage": 28.42, "elapsed_time": "0:11:56", "remaining_time": "0:30:05"}
{"current_steps": 134, "total_steps": 468, "loss": 0.0289, "learning_rate": 1.6783550191642962e-05, "epoch": 0.28586666666666666, "percentage": 28.63, "elapsed_time": "0:12:01", "remaining_time": "0:29:59"}
{"current_steps": 135, "total_steps": 468, "loss": 0.0413, "learning_rate": 1.6732433038731245e-05, "epoch": 0.288, "percentage": 28.85, "elapsed_time": "0:12:07", "remaining_time": "0:29:53"}
{"current_steps": 136, "total_steps": 468, "loss": 0.0568, "learning_rate": 1.668099208820619e-05, "epoch": 0.29013333333333335, "percentage": 29.06, "elapsed_time": "0:12:12", "remaining_time": "0:29:48"}
{"current_steps": 137, "total_steps": 468, "loss": 0.0529, "learning_rate": 1.662922981412983e-05, "epoch": 0.2922666666666667, "percentage": 29.27, "elapsed_time": "0:12:17", "remaining_time": "0:29:43"}
{"current_steps": 138, "total_steps": 468, "loss": 0.0582, "learning_rate": 1.657714870601833e-05, "epoch": 0.2944, "percentage": 29.49, "elapsed_time": "0:12:23", "remaining_time": "0:29:37"}
{"current_steps": 139, "total_steps": 468, "loss": 0.0501, "learning_rate": 1.6524751268722216e-05, "epoch": 0.2965333333333333, "percentage": 29.7, "elapsed_time": "0:12:28", "remaining_time": "0:29:32"}
{"current_steps": 140, "total_steps": 468, "loss": 0.0341, "learning_rate": 1.647204002230594e-05, "epoch": 0.2986666666666667, "percentage": 29.91, "elapsed_time": "0:12:34", "remaining_time": "0:29:26"}
{"current_steps": 141, "total_steps": 468, "loss": 0.0317, "learning_rate": 1.641901750192666e-05, "epoch": 0.3008, "percentage": 30.13, "elapsed_time": "0:12:39", "remaining_time": "0:29:21"}
{"current_steps": 142, "total_steps": 468, "loss": 0.0391, "learning_rate": 1.63656862577123e-05, "epoch": 0.30293333333333333, "percentage": 30.34, "elapsed_time": "0:12:44", "remaining_time": "0:29:15"}
{"current_steps": 143, "total_steps": 468, "loss": 0.0499, "learning_rate": 1.6312048854638927e-05, "epoch": 0.30506666666666665, "percentage": 30.56, "elapsed_time": "0:12:49", "remaining_time": "0:29:09"}
{"current_steps": 144, "total_steps": 468, "loss": 0.0529, "learning_rate": 1.6258107872407376e-05, "epoch": 0.3072, "percentage": 30.77, "elapsed_time": "0:12:55", "remaining_time": "0:29:04"}
{"current_steps": 145, "total_steps": 468, "loss": 0.0324, "learning_rate": 1.620386590531917e-05, "epoch": 0.30933333333333335, "percentage": 30.98, "elapsed_time": "0:13:00", "remaining_time": "0:28:58"}
{"current_steps": 146, "total_steps": 468, "loss": 0.0365, "learning_rate": 1.614932556215176e-05, "epoch": 0.31146666666666667, "percentage": 31.2, "elapsed_time": "0:13:05", "remaining_time": "0:28:53"}
{"current_steps": 147, "total_steps": 468, "loss": 0.0453, "learning_rate": 1.609448946603304e-05, "epoch": 0.3136, "percentage": 31.41, "elapsed_time": "0:13:11", "remaining_time": "0:28:47"}
{"current_steps": 148, "total_steps": 468, "loss": 0.0334, "learning_rate": 1.6039360254315213e-05, "epoch": 0.3157333333333333, "percentage": 31.62, "elapsed_time": "0:13:16", "remaining_time": "0:28:41"}
{"current_steps": 149, "total_steps": 468, "loss": 0.0294, "learning_rate": 1.598394057844792e-05, "epoch": 0.3178666666666667, "percentage": 31.84, "elapsed_time": "0:13:21", "remaining_time": "0:28:36"}
{"current_steps": 150, "total_steps": 468, "loss": 0.0409, "learning_rate": 1.592823310385073e-05, "epoch": 0.32, "percentage": 32.05, "elapsed_time": "0:13:27", "remaining_time": "0:28:30"}
{"current_steps": 151, "total_steps": 468, "loss": 0.0585, "learning_rate": 1.5872240509784943e-05, "epoch": 0.3221333333333333, "percentage": 32.26, "elapsed_time": "0:13:32", "remaining_time": "0:28:25"}
{"current_steps": 152, "total_steps": 468, "loss": 0.0376, "learning_rate": 1.5815965489224746e-05, "epoch": 0.32426666666666665, "percentage": 32.48, "elapsed_time": "0:13:37", "remaining_time": "0:28:19"}
{"current_steps": 153, "total_steps": 468, "loss": 0.0338, "learning_rate": 1.5759410748727663e-05, "epoch": 0.3264, "percentage": 32.69, "elapsed_time": "0:13:42", "remaining_time": "0:28:14"}
{"current_steps": 154, "total_steps": 468, "loss": 0.0614, "learning_rate": 1.5702579008304403e-05, "epoch": 0.32853333333333334, "percentage": 32.91, "elapsed_time": "0:13:48", "remaining_time": "0:28:08"}
{"current_steps": 155, "total_steps": 468, "loss": 0.0312, "learning_rate": 1.5645473001288057e-05, "epoch": 0.33066666666666666, "percentage": 33.12, "elapsed_time": "0:13:53", "remaining_time": "0:28:03"}
{"current_steps": 156, "total_steps": 468, "loss": 0.0353, "learning_rate": 1.5588095474202597e-05, "epoch": 0.3328, "percentage": 33.33, "elapsed_time": "0:13:58", "remaining_time": "0:27:57"}
{"current_steps": 157, "total_steps": 468, "loss": 0.0318, "learning_rate": 1.5530449186630805e-05, "epoch": 0.33493333333333336, "percentage": 33.55, "elapsed_time": "0:14:04", "remaining_time": "0:27:52"}
{"current_steps": 158, "total_steps": 468, "loss": 0.0377, "learning_rate": 1.547253691108156e-05, "epoch": 0.3370666666666667, "percentage": 33.76, "elapsed_time": "0:14:09", "remaining_time": "0:27:46"}
{"current_steps": 159, "total_steps": 468, "loss": 0.0433, "learning_rate": 1.5414361432856475e-05, "epoch": 0.3392, "percentage": 33.97, "elapsed_time": "0:14:14", "remaining_time": "0:27:40"}
{"current_steps": 160, "total_steps": 468, "loss": 0.0476, "learning_rate": 1.5355925549915943e-05, "epoch": 0.3413333333333333, "percentage": 34.19, "elapsed_time": "0:14:19", "remaining_time": "0:27:35"}
{"current_steps": 161, "total_steps": 468, "loss": 0.0425, "learning_rate": 1.5297232072744576e-05, "epoch": 0.34346666666666664, "percentage": 34.4, "elapsed_time": "0:14:25", "remaining_time": "0:27:29"}
{"current_steps": 162, "total_steps": 468, "loss": 0.0496, "learning_rate": 1.5238283824216015e-05, "epoch": 0.3456, "percentage": 34.62, "elapsed_time": "0:14:30", "remaining_time": "0:27:24"}
{"current_steps": 163, "total_steps": 468, "loss": 0.0246, "learning_rate": 1.5179083639457193e-05, "epoch": 0.34773333333333334, "percentage": 34.83, "elapsed_time": "0:14:35", "remaining_time": "0:27:18"}
{"current_steps": 164, "total_steps": 468, "loss": 0.0394, "learning_rate": 1.5119634365711955e-05, "epoch": 0.34986666666666666, "percentage": 35.04, "elapsed_time": "0:14:41", "remaining_time": "0:27:13"}
{"current_steps": 165, "total_steps": 468, "loss": 0.046, "learning_rate": 1.5059938862204126e-05, "epoch": 0.352, "percentage": 35.26, "elapsed_time": "0:14:46", "remaining_time": "0:27:07"}
{"current_steps": 166, "total_steps": 468, "loss": 0.037, "learning_rate": 1.5000000000000002e-05, "epoch": 0.35413333333333336, "percentage": 35.47, "elapsed_time": "0:14:51", "remaining_time": "0:27:02"}
{"current_steps": 167, "total_steps": 468, "loss": 0.0594, "learning_rate": 1.4939820661870253e-05, "epoch": 0.3562666666666667, "percentage": 35.68, "elapsed_time": "0:14:56", "remaining_time": "0:26:56"}
{"current_steps": 168, "total_steps": 468, "loss": 0.0437, "learning_rate": 1.4879403742151283e-05, "epoch": 0.3584, "percentage": 35.9, "elapsed_time": "0:15:02", "remaining_time": "0:26:51"}
{"current_steps": 169, "total_steps": 468, "loss": 0.041, "learning_rate": 1.481875214660604e-05, "epoch": 0.3605333333333333, "percentage": 36.11, "elapsed_time": "0:15:07", "remaining_time": "0:26:45"}
{"current_steps": 170, "total_steps": 468, "loss": 0.0435, "learning_rate": 1.4757868792284231e-05, "epoch": 0.3626666666666667, "percentage": 36.32, "elapsed_time": "0:15:12", "remaining_time": "0:26:39"}
{"current_steps": 171, "total_steps": 468, "loss": 0.0362, "learning_rate": 1.469675660738206e-05, "epoch": 0.3648, "percentage": 36.54, "elapsed_time": "0:15:17", "remaining_time": "0:26:34"}
{"current_steps": 172, "total_steps": 468, "loss": 0.0301, "learning_rate": 1.463541853110137e-05, "epoch": 0.36693333333333333, "percentage": 36.75, "elapsed_time": "0:15:23", "remaining_time": "0:26:28"}
{"current_steps": 173, "total_steps": 468, "loss": 0.0353, "learning_rate": 1.4573857513508297e-05, "epoch": 0.36906666666666665, "percentage": 36.97, "elapsed_time": "0:15:28", "remaining_time": "0:26:23"}
{"current_steps": 174, "total_steps": 468, "loss": 0.0263, "learning_rate": 1.4512076515391375e-05, "epoch": 0.3712, "percentage": 37.18, "elapsed_time": "0:15:33", "remaining_time": "0:26:17"}
{"current_steps": 175, "total_steps": 468, "loss": 0.0484, "learning_rate": 1.4450078508119148e-05, "epoch": 0.37333333333333335, "percentage": 37.39, "elapsed_time": "0:15:39", "remaining_time": "0:26:12"}
{"current_steps": 176, "total_steps": 468, "loss": 0.077, "learning_rate": 1.4387866473497254e-05, "epoch": 0.37546666666666667, "percentage": 37.61, "elapsed_time": "0:15:44", "remaining_time": "0:26:06"}
{"current_steps": 177, "total_steps": 468, "loss": 0.0555, "learning_rate": 1.4325443403625012e-05, "epoch": 0.3776, "percentage": 37.82, "elapsed_time": "0:15:49", "remaining_time": "0:26:01"}
{"current_steps": 178, "total_steps": 468, "loss": 0.0398, "learning_rate": 1.4262812300751528e-05, "epoch": 0.3797333333333333, "percentage": 38.03, "elapsed_time": "0:15:55", "remaining_time": "0:25:56"}
{"current_steps": 179, "total_steps": 468, "loss": 0.02, "learning_rate": 1.4199976177131283e-05, "epoch": 0.3818666666666667, "percentage": 38.25, "elapsed_time": "0:16:00", "remaining_time": "0:25:50"}
{"current_steps": 180, "total_steps": 468, "loss": 0.0396, "learning_rate": 1.4136938054879284e-05, "epoch": 0.384, "percentage": 38.46, "elapsed_time": "0:16:05", "remaining_time": "0:25:45"}
{"current_steps": 181, "total_steps": 468, "loss": 0.036, "learning_rate": 1.4073700965825681e-05, "epoch": 0.38613333333333333, "percentage": 38.68, "elapsed_time": "0:16:11", "remaining_time": "0:25:40"}
{"current_steps": 182, "total_steps": 468, "loss": 0.0525, "learning_rate": 1.4010267951369985e-05, "epoch": 0.38826666666666665, "percentage": 38.89, "elapsed_time": "0:16:16", "remaining_time": "0:25:34"}
{"current_steps": 183, "total_steps": 468, "loss": 0.0444, "learning_rate": 1.3946642062334765e-05, "epoch": 0.3904, "percentage": 39.1, "elapsed_time": "0:16:21", "remaining_time": "0:25:29"}
{"current_steps": 184, "total_steps": 468, "loss": 0.0436, "learning_rate": 1.3882826358818936e-05, "epoch": 0.39253333333333335, "percentage": 39.32, "elapsed_time": "0:16:27", "remaining_time": "0:25:23"}
{"current_steps": 185, "total_steps": 468, "loss": 0.04, "learning_rate": 1.381882391005058e-05, "epoch": 0.39466666666666667, "percentage": 39.53, "elapsed_time": "0:16:32", "remaining_time": "0:25:18"}
{"current_steps": 186, "total_steps": 468, "loss": 0.0334, "learning_rate": 1.3754637794239303e-05, "epoch": 0.3968, "percentage": 39.74, "elapsed_time": "0:16:37", "remaining_time": "0:25:13"}
{"current_steps": 187, "total_steps": 468, "loss": 0.0511, "learning_rate": 1.3690271098428234e-05, "epoch": 0.3989333333333333, "percentage": 39.96, "elapsed_time": "0:16:43", "remaining_time": "0:25:07"}
{"current_steps": 188, "total_steps": 468, "loss": 0.0362, "learning_rate": 1.362572691834553e-05, "epoch": 0.4010666666666667, "percentage": 40.17, "elapsed_time": "0:16:48", "remaining_time": "0:25:02"}
{"current_steps": 189, "total_steps": 468, "loss": 0.0318, "learning_rate": 1.356100835825547e-05, "epoch": 0.4032, "percentage": 40.38, "elapsed_time": "0:16:54", "remaining_time": "0:24:56"}
{"current_steps": 190, "total_steps": 468, "loss": 0.0351, "learning_rate": 1.3496118530809195e-05, "epoch": 0.4053333333333333, "percentage": 40.6, "elapsed_time": "0:16:59", "remaining_time": "0:24:51"}
{"current_steps": 191, "total_steps": 468, "loss": 0.0431, "learning_rate": 1.3431060556894959e-05, "epoch": 0.40746666666666664, "percentage": 40.81, "elapsed_time": "0:17:04", "remaining_time": "0:24:46"}
{"current_steps": 192, "total_steps": 468, "loss": 0.036, "learning_rate": 1.3365837565488065e-05, "epoch": 0.4096, "percentage": 41.03, "elapsed_time": "0:17:09", "remaining_time": "0:24:40"}
{"current_steps": 193, "total_steps": 468, "loss": 0.0267, "learning_rate": 1.3300452693500358e-05, "epoch": 0.41173333333333334, "percentage": 41.24, "elapsed_time": "0:17:15", "remaining_time": "0:24:35"}
{"current_steps": 194, "total_steps": 468, "loss": 0.0315, "learning_rate": 1.3234909085629362e-05, "epoch": 0.41386666666666666, "percentage": 41.45, "elapsed_time": "0:17:20", "remaining_time": "0:24:29"}
{"current_steps": 195, "total_steps": 468, "loss": 0.0238, "learning_rate": 1.316920989420703e-05, "epoch": 0.416, "percentage": 41.67, "elapsed_time": "0:17:25", "remaining_time": "0:24:24"}
{"current_steps": 196, "total_steps": 468, "loss": 0.0235, "learning_rate": 1.3103358279048136e-05, "epoch": 0.41813333333333336, "percentage": 41.88, "elapsed_time": "0:17:31", "remaining_time": "0:24:18"}
{"current_steps": 197, "total_steps": 468, "loss": 0.0399, "learning_rate": 1.30373574072983e-05, "epoch": 0.4202666666666667, "percentage": 42.09, "elapsed_time": "0:17:36", "remaining_time": "0:24:13"}
{"current_steps": 198, "total_steps": 468, "loss": 0.0326, "learning_rate": 1.2971210453281675e-05, "epoch": 0.4224, "percentage": 42.31, "elapsed_time": "0:17:41", "remaining_time": "0:24:08"}
{"current_steps": 199, "total_steps": 468, "loss": 0.0343, "learning_rate": 1.2904920598348252e-05, "epoch": 0.4245333333333333, "percentage": 42.52, "elapsed_time": "0:17:47", "remaining_time": "0:24:02"}
{"current_steps": 200, "total_steps": 468, "loss": 0.04, "learning_rate": 1.2838491030720882e-05, "epoch": 0.4266666666666667, "percentage": 42.74, "elapsed_time": "0:17:52", "remaining_time": "0:23:57"}
{"current_steps": 201, "total_steps": 468, "loss": 0.0389, "learning_rate": 1.2771924945341906e-05, "epoch": 0.4288, "percentage": 42.95, "elapsed_time": "0:19:40", "remaining_time": "0:26:08"}
{"current_steps": 202, "total_steps": 468, "loss": 0.0469, "learning_rate": 1.2705225543719537e-05, "epoch": 0.43093333333333333, "percentage": 43.16, "elapsed_time": "0:19:46", "remaining_time": "0:26:01"}
{"current_steps": 203, "total_steps": 468, "loss": 0.0294, "learning_rate": 1.2638396033773836e-05, "epoch": 0.43306666666666666, "percentage": 43.38, "elapsed_time": "0:19:51", "remaining_time": "0:25:55"}
{"current_steps": 204, "total_steps": 468, "loss": 0.028, "learning_rate": 1.257143962968246e-05, "epoch": 0.4352, "percentage": 43.59, "elapsed_time": "0:19:56", "remaining_time": "0:25:48"}
{"current_steps": 205, "total_steps": 468, "loss": 0.0257, "learning_rate": 1.250435955172606e-05, "epoch": 0.43733333333333335, "percentage": 43.8, "elapsed_time": "0:20:02", "remaining_time": "0:25:42"}
{"current_steps": 206, "total_steps": 468, "loss": 0.036, "learning_rate": 1.2437159026133397e-05, "epoch": 0.43946666666666667, "percentage": 44.02, "elapsed_time": "0:20:07", "remaining_time": "0:25:35"}
{"current_steps": 207, "total_steps": 468, "loss": 0.0424, "learning_rate": 1.236984128492619e-05, "epoch": 0.4416, "percentage": 44.23, "elapsed_time": "0:20:12", "remaining_time": "0:25:28"}
{"current_steps": 208, "total_steps": 468, "loss": 0.0268, "learning_rate": 1.230240956576367e-05, "epoch": 0.4437333333333333, "percentage": 44.44, "elapsed_time": "0:20:17", "remaining_time": "0:25:22"}
{"current_steps": 209, "total_steps": 468, "loss": 0.0374, "learning_rate": 1.2234867111786851e-05, "epoch": 0.4458666666666667, "percentage": 44.66, "elapsed_time": "0:20:23", "remaining_time": "0:25:15"}
{"current_steps": 210, "total_steps": 468, "loss": 0.0318, "learning_rate": 1.2167217171462566e-05, "epoch": 0.448, "percentage": 44.87, "elapsed_time": "0:20:28", "remaining_time": "0:25:09"}
{"current_steps": 211, "total_steps": 468, "loss": 0.0296, "learning_rate": 1.2099462998427211e-05, "epoch": 0.45013333333333333, "percentage": 45.09, "elapsed_time": "0:20:33", "remaining_time": "0:25:02"}
{"current_steps": 212, "total_steps": 468, "loss": 0.0192, "learning_rate": 1.2031607851330282e-05, "epoch": 0.45226666666666665, "percentage": 45.3, "elapsed_time": "0:20:38", "remaining_time": "0:24:56"}
{"current_steps": 213, "total_steps": 468, "loss": 0.039, "learning_rate": 1.1963654993677645e-05, "epoch": 0.4544, "percentage": 45.51, "elapsed_time": "0:20:44", "remaining_time": "0:24:49"}
{"current_steps": 214, "total_steps": 468, "loss": 0.0428, "learning_rate": 1.189560769367456e-05, "epoch": 0.45653333333333335, "percentage": 45.73, "elapsed_time": "0:20:49", "remaining_time": "0:24:43"}
{"current_steps": 215, "total_steps": 468, "loss": 0.0558, "learning_rate": 1.1827469224068531e-05, "epoch": 0.45866666666666667, "percentage": 45.94, "elapsed_time": "0:20:54", "remaining_time": "0:24:36"}
{"current_steps": 216, "total_steps": 468, "loss": 0.0529, "learning_rate": 1.1759242861991855e-05, "epoch": 0.4608, "percentage": 46.15, "elapsed_time": "0:21:00", "remaining_time": "0:24:30"}
{"current_steps": 217, "total_steps": 468, "loss": 0.0342, "learning_rate": 1.1690931888804055e-05, "epoch": 0.4629333333333333, "percentage": 46.37, "elapsed_time": "0:21:05", "remaining_time": "0:24:23"}
{"current_steps": 218, "total_steps": 468, "loss": 0.0391, "learning_rate": 1.1622539589934027e-05, "epoch": 0.4650666666666667, "percentage": 46.58, "elapsed_time": "0:21:10", "remaining_time": "0:24:17"}
{"current_steps": 219, "total_steps": 468, "loss": 0.0227, "learning_rate": 1.155406925472205e-05, "epoch": 0.4672, "percentage": 46.79, "elapsed_time": "0:21:16", "remaining_time": "0:24:10"}
{"current_steps": 220, "total_steps": 468, "loss": 0.0351, "learning_rate": 1.148552417626157e-05, "epoch": 0.4693333333333333, "percentage": 47.01, "elapsed_time": "0:21:21", "remaining_time": "0:24:04"}
{"current_steps": 221, "total_steps": 468, "loss": 0.0465, "learning_rate": 1.1416907651240826e-05, "epoch": 0.47146666666666665, "percentage": 47.22, "elapsed_time": "0:21:26", "remaining_time": "0:23:58"}
{"current_steps": 222, "total_steps": 468, "loss": 0.0407, "learning_rate": 1.1348222979784289e-05, "epoch": 0.4736, "percentage": 47.44, "elapsed_time": "0:21:32", "remaining_time": "0:23:51"}
{"current_steps": 223, "total_steps": 468, "loss": 0.0373, "learning_rate": 1.1279473465293953e-05, "epoch": 0.47573333333333334, "percentage": 47.65, "elapsed_time": "0:21:37", "remaining_time": "0:23:45"}
{"current_steps": 224, "total_steps": 468, "loss": 0.0482, "learning_rate": 1.1210662414290439e-05, "epoch": 0.47786666666666666, "percentage": 47.86, "elapsed_time": "0:21:42", "remaining_time": "0:23:39"}
{"current_steps": 225, "total_steps": 468, "loss": 0.0405, "learning_rate": 1.1141793136253987e-05, "epoch": 0.48, "percentage": 48.08, "elapsed_time": "0:21:48", "remaining_time": "0:23:32"}
{"current_steps": 226, "total_steps": 468, "loss": 0.0313, "learning_rate": 1.107286894346527e-05, "epoch": 0.48213333333333336, "percentage": 48.29, "elapsed_time": "0:21:53", "remaining_time": "0:23:26"}
{"current_steps": 227, "total_steps": 468, "loss": 0.0332, "learning_rate": 1.1003893150846103e-05, "epoch": 0.4842666666666667, "percentage": 48.5, "elapsed_time": "0:21:58", "remaining_time": "0:23:20"}
{"current_steps": 228, "total_steps": 468, "loss": 0.0444, "learning_rate": 1.09348690758e-05, "epoch": 0.4864, "percentage": 48.72, "elapsed_time": "0:22:04", "remaining_time": "0:23:13"}
{"current_steps": 229, "total_steps": 468, "loss": 0.0301, "learning_rate": 1.0865800038052632e-05, "epoch": 0.4885333333333333, "percentage": 48.93, "elapsed_time": "0:22:09", "remaining_time": "0:23:07"}
{"current_steps": 230, "total_steps": 468, "loss": 0.031, "learning_rate": 1.0796689359492154e-05, "epoch": 0.49066666666666664, "percentage": 49.15, "elapsed_time": "0:22:14", "remaining_time": "0:23:00"}
{"current_steps": 231, "total_steps": 468, "loss": 0.0347, "learning_rate": 1.072754036400944e-05, "epoch": 0.4928, "percentage": 49.36, "elapsed_time": "0:22:19", "remaining_time": "0:22:54"}
{"current_steps": 232, "total_steps": 468, "loss": 0.0301, "learning_rate": 1.0658356377338235e-05, "epoch": 0.49493333333333334, "percentage": 49.57, "elapsed_time": "0:22:25", "remaining_time": "0:22:48"}
{"current_steps": 233, "total_steps": 468, "loss": 0.0346, "learning_rate": 1.0589140726895179e-05, "epoch": 0.49706666666666666, "percentage": 49.79, "elapsed_time": "0:22:30", "remaining_time": "0:22:41"}
{"current_steps": 234, "total_steps": 468, "loss": 0.0383, "learning_rate": 1.0519896741619803e-05, "epoch": 0.4992, "percentage": 50.0, "elapsed_time": "0:22:35", "remaining_time": "0:22:35"}
{"current_steps": 235, "total_steps": 468, "loss": 0.0365, "learning_rate": 1.0450627751814396e-05, "epoch": 0.5013333333333333, "percentage": 50.21, "elapsed_time": "0:22:41", "remaining_time": "0:22:29"}
{"current_steps": 236, "total_steps": 468, "loss": 0.0495, "learning_rate": 1.0381337088983838e-05, "epoch": 0.5034666666666666, "percentage": 50.43, "elapsed_time": "0:22:46", "remaining_time": "0:22:23"}
{"current_steps": 237, "total_steps": 468, "loss": 0.0376, "learning_rate": 1.0312028085675393e-05, "epoch": 0.5056, "percentage": 50.64, "elapsed_time": "0:22:51", "remaining_time": "0:22:17"}
{"current_steps": 238, "total_steps": 468, "loss": 0.0256, "learning_rate": 1.0242704075318402e-05, "epoch": 0.5077333333333334, "percentage": 50.85, "elapsed_time": "0:22:57", "remaining_time": "0:22:10"}
{"current_steps": 239, "total_steps": 468, "loss": 0.0368, "learning_rate": 1.0173368392063978e-05, "epoch": 0.5098666666666667, "percentage": 51.07, "elapsed_time": "0:23:02", "remaining_time": "0:22:04"}
{"current_steps": 240, "total_steps": 468, "loss": 0.0331, "learning_rate": 1.0104024370624644e-05, "epoch": 0.512, "percentage": 51.28, "elapsed_time": "0:23:07", "remaining_time": "0:21:58"}
{"current_steps": 241, "total_steps": 468, "loss": 0.032, "learning_rate": 1.0034675346113945e-05, "epoch": 0.5141333333333333, "percentage": 51.5, "elapsed_time": "0:23:13", "remaining_time": "0:21:52"}
{"current_steps": 242, "total_steps": 468, "loss": 0.0372, "learning_rate": 9.965324653886057e-06, "epoch": 0.5162666666666667, "percentage": 51.71, "elapsed_time": "0:23:18", "remaining_time": "0:21:46"}
{"current_steps": 243, "total_steps": 468, "loss": 0.0333, "learning_rate": 9.89597562937536e-06, "epoch": 0.5184, "percentage": 51.92, "elapsed_time": "0:23:23", "remaining_time": "0:21:39"}
{"current_steps": 244, "total_steps": 468, "loss": 0.0467, "learning_rate": 9.826631607936024e-06, "epoch": 0.5205333333333333, "percentage": 52.14, "elapsed_time": "0:23:29", "remaining_time": "0:21:33"}
{"current_steps": 245, "total_steps": 468, "loss": 0.0425, "learning_rate": 9.757295924681601e-06, "epoch": 0.5226666666666666, "percentage": 52.35, "elapsed_time": "0:23:34", "remaining_time": "0:21:27"}
{"current_steps": 246, "total_steps": 468, "loss": 0.0447, "learning_rate": 9.687971914324607e-06, "epoch": 0.5248, "percentage": 52.56, "elapsed_time": "0:23:39", "remaining_time": "0:21:21"}
{"current_steps": 247, "total_steps": 468, "loss": 0.0319, "learning_rate": 9.618662911016165e-06, "epoch": 0.5269333333333334, "percentage": 52.78, "elapsed_time": "0:23:44", "remaining_time": "0:21:14"}
{"current_steps": 248, "total_steps": 468, "loss": 0.0328, "learning_rate": 9.54937224818561e-06, "epoch": 0.5290666666666667, "percentage": 52.99, "elapsed_time": "0:23:50", "remaining_time": "0:21:08"}
{"current_steps": 249, "total_steps": 468, "loss": 0.0478, "learning_rate": 9.480103258380198e-06, "epoch": 0.5312, "percentage": 53.21, "elapsed_time": "0:23:55", "remaining_time": "0:21:02"}
{"current_steps": 250, "total_steps": 468, "loss": 0.0302, "learning_rate": 9.410859273104823e-06, "epoch": 0.5333333333333333, "percentage": 53.42, "elapsed_time": "0:24:00", "remaining_time": "0:20:56"}
{"current_steps": 251, "total_steps": 468, "loss": 0.029, "learning_rate": 9.341643622661768e-06, "epoch": 0.5354666666666666, "percentage": 53.63, "elapsed_time": "0:24:06", "remaining_time": "0:20:50"}
{"current_steps": 252, "total_steps": 468, "loss": 0.0248, "learning_rate": 9.272459635990563e-06, "epoch": 0.5376, "percentage": 53.85, "elapsed_time": "0:24:11", "remaining_time": "0:20:44"}
{"current_steps": 253, "total_steps": 468, "loss": 0.0213, "learning_rate": 9.20331064050785e-06, "epoch": 0.5397333333333333, "percentage": 54.06, "elapsed_time": "0:24:16", "remaining_time": "0:20:38"}
{"current_steps": 254, "total_steps": 468, "loss": 0.0422, "learning_rate": 9.134199961947368e-06, "epoch": 0.5418666666666667, "percentage": 54.27, "elapsed_time": "0:24:22", "remaining_time": "0:20:32"}
{"current_steps": 255, "total_steps": 468, "loss": 0.0381, "learning_rate": 9.065130924199998e-06, "epoch": 0.544, "percentage": 54.49, "elapsed_time": "0:24:28", "remaining_time": "0:20:26"}
{"current_steps": 256, "total_steps": 468, "loss": 0.0361, "learning_rate": 8.996106849153897e-06, "epoch": 0.5461333333333334, "percentage": 54.7, "elapsed_time": "0:24:33", "remaining_time": "0:20:20"}
{"current_steps": 257, "total_steps": 468, "loss": 0.0316, "learning_rate": 8.927131056534734e-06, "epoch": 0.5482666666666667, "percentage": 54.91, "elapsed_time": "0:24:38", "remaining_time": "0:20:14"}
{"current_steps": 258, "total_steps": 468, "loss": 0.0395, "learning_rate": 8.858206863746018e-06, "epoch": 0.5504, "percentage": 55.13, "elapsed_time": "0:24:44", "remaining_time": "0:20:08"}
{"current_steps": 259, "total_steps": 468, "loss": 0.0373, "learning_rate": 8.789337585709565e-06, "epoch": 0.5525333333333333, "percentage": 55.34, "elapsed_time": "0:24:49", "remaining_time": "0:20:01"}
{"current_steps": 260, "total_steps": 468, "loss": 0.0297, "learning_rate": 8.720526534706052e-06, "epoch": 0.5546666666666666, "percentage": 55.56, "elapsed_time": "0:24:54", "remaining_time": "0:19:55"}
{"current_steps": 261, "total_steps": 468, "loss": 0.0302, "learning_rate": 8.651777020215713e-06, "epoch": 0.5568, "percentage": 55.77, "elapsed_time": "0:25:00", "remaining_time": "0:19:49"}
{"current_steps": 262, "total_steps": 468, "loss": 0.033, "learning_rate": 8.583092348759176e-06, "epoch": 0.5589333333333333, "percentage": 55.98, "elapsed_time": "0:25:05", "remaining_time": "0:19:43"}
{"current_steps": 263, "total_steps": 468, "loss": 0.0346, "learning_rate": 8.514475823738431e-06, "epoch": 0.5610666666666667, "percentage": 56.2, "elapsed_time": "0:25:10", "remaining_time": "0:19:37"}
{"current_steps": 264, "total_steps": 468, "loss": 0.0233, "learning_rate": 8.445930745277953e-06, "epoch": 0.5632, "percentage": 56.41, "elapsed_time": "0:25:16", "remaining_time": "0:19:31"}
{"current_steps": 265, "total_steps": 468, "loss": 0.0252, "learning_rate": 8.377460410065973e-06, "epoch": 0.5653333333333334, "percentage": 56.62, "elapsed_time": "0:25:21", "remaining_time": "0:19:25"}
{"current_steps": 266, "total_steps": 468, "loss": 0.0328, "learning_rate": 8.309068111195947e-06, "epoch": 0.5674666666666667, "percentage": 56.84, "elapsed_time": "0:25:26", "remaining_time": "0:19:19"}
{"current_steps": 267, "total_steps": 468, "loss": 0.0283, "learning_rate": 8.240757138008149e-06, "epoch": 0.5696, "percentage": 57.05, "elapsed_time": "0:25:32", "remaining_time": "0:19:13"}
{"current_steps": 268, "total_steps": 468, "loss": 0.0436, "learning_rate": 8.172530775931476e-06, "epoch": 0.5717333333333333, "percentage": 57.26, "elapsed_time": "0:25:37", "remaining_time": "0:19:07"}
{"current_steps": 269, "total_steps": 468, "loss": 0.0359, "learning_rate": 8.104392306325442e-06, "epoch": 0.5738666666666666, "percentage": 57.48, "elapsed_time": "0:25:42", "remaining_time": "0:19:01"}
{"current_steps": 270, "total_steps": 468, "loss": 0.0364, "learning_rate": 8.036345006322358e-06, "epoch": 0.576, "percentage": 57.69, "elapsed_time": "0:25:48", "remaining_time": "0:18:55"}
{"current_steps": 271, "total_steps": 468, "loss": 0.0221, "learning_rate": 7.96839214866972e-06, "epoch": 0.5781333333333334, "percentage": 57.91, "elapsed_time": "0:25:53", "remaining_time": "0:18:49"}
{"current_steps": 272, "total_steps": 468, "loss": 0.0309, "learning_rate": 7.900537001572792e-06, "epoch": 0.5802666666666667, "percentage": 58.12, "elapsed_time": "0:25:58", "remaining_time": "0:18:43"}
{"current_steps": 273, "total_steps": 468, "loss": 0.0412, "learning_rate": 7.832782828537437e-06, "epoch": 0.5824, "percentage": 58.33, "elapsed_time": "0:26:04", "remaining_time": "0:18:37"}
{"current_steps": 274, "total_steps": 468, "loss": 0.0384, "learning_rate": 7.765132888213147e-06, "epoch": 0.5845333333333333, "percentage": 58.55, "elapsed_time": "0:26:09", "remaining_time": "0:18:31"}
{"current_steps": 275, "total_steps": 468, "loss": 0.0501, "learning_rate": 7.697590434236331e-06, "epoch": 0.5866666666666667, "percentage": 58.76, "elapsed_time": "0:26:14", "remaining_time": "0:18:25"}
{"current_steps": 276, "total_steps": 468, "loss": 0.0215, "learning_rate": 7.630158715073813e-06, "epoch": 0.5888, "percentage": 58.97, "elapsed_time": "0:26:20", "remaining_time": "0:18:19"}
{"current_steps": 277, "total_steps": 468, "loss": 0.0195, "learning_rate": 7.56284097386661e-06, "epoch": 0.5909333333333333, "percentage": 59.19, "elapsed_time": "0:26:25", "remaining_time": "0:18:13"}
{"current_steps": 278, "total_steps": 468, "loss": 0.0288, "learning_rate": 7.495640448273947e-06, "epoch": 0.5930666666666666, "percentage": 59.4, "elapsed_time": "0:26:30", "remaining_time": "0:18:07"}
{"current_steps": 279, "total_steps": 468, "loss": 0.0186, "learning_rate": 7.428560370317542e-06, "epoch": 0.5952, "percentage": 59.62, "elapsed_time": "0:26:36", "remaining_time": "0:18:01"}
{"current_steps": 280, "total_steps": 468, "loss": 0.0294, "learning_rate": 7.361603966226165e-06, "epoch": 0.5973333333333334, "percentage": 59.83, "elapsed_time": "0:26:41", "remaining_time": "0:17:55"}
{"current_steps": 281, "total_steps": 468, "loss": 0.0282, "learning_rate": 7.294774456280466e-06, "epoch": 0.5994666666666667, "percentage": 60.04, "elapsed_time": "0:26:46", "remaining_time": "0:17:49"}
{"current_steps": 282, "total_steps": 468, "loss": 0.0409, "learning_rate": 7.228075054658096e-06, "epoch": 0.6016, "percentage": 60.26, "elapsed_time": "0:26:51", "remaining_time": "0:17:43"}
{"current_steps": 283, "total_steps": 468, "loss": 0.0276, "learning_rate": 7.1615089692791225e-06, "epoch": 0.6037333333333333, "percentage": 60.47, "elapsed_time": "0:26:57", "remaining_time": "0:17:37"}
{"current_steps": 284, "total_steps": 468, "loss": 0.0257, "learning_rate": 7.095079401651749e-06, "epoch": 0.6058666666666667, "percentage": 60.68, "elapsed_time": "0:27:02", "remaining_time": "0:17:31"}
{"current_steps": 285, "total_steps": 468, "loss": 0.022, "learning_rate": 7.028789546718327e-06, "epoch": 0.608, "percentage": 60.9, "elapsed_time": "0:27:07", "remaining_time": "0:17:25"}
{"current_steps": 286, "total_steps": 468, "loss": 0.0398, "learning_rate": 6.962642592701703e-06, "epoch": 0.6101333333333333, "percentage": 61.11, "elapsed_time": "0:27:12", "remaining_time": "0:17:19"}
{"current_steps": 287, "total_steps": 468, "loss": 0.0319, "learning_rate": 6.896641720951868e-06, "epoch": 0.6122666666666666, "percentage": 61.32, "elapsed_time": "0:27:18", "remaining_time": "0:17:13"}
{"current_steps": 288, "total_steps": 468, "loss": 0.0301, "learning_rate": 6.8307901057929735e-06, "epoch": 0.6144, "percentage": 61.54, "elapsed_time": "0:27:23", "remaining_time": "0:17:07"}
{"current_steps": 289, "total_steps": 468, "loss": 0.0316, "learning_rate": 6.765090914370643e-06, "epoch": 0.6165333333333334, "percentage": 61.75, "elapsed_time": "0:27:28", "remaining_time": "0:17:01"}
{"current_steps": 290, "total_steps": 468, "loss": 0.036, "learning_rate": 6.6995473064996455e-06, "epoch": 0.6186666666666667, "percentage": 61.97, "elapsed_time": "0:27:33", "remaining_time": "0:16:55"}
{"current_steps": 291, "total_steps": 468, "loss": 0.0256, "learning_rate": 6.634162434511939e-06, "epoch": 0.6208, "percentage": 62.18, "elapsed_time": "0:27:39", "remaining_time": "0:16:49"}
{"current_steps": 292, "total_steps": 468, "loss": 0.0458, "learning_rate": 6.568939443105045e-06, "epoch": 0.6229333333333333, "percentage": 62.39, "elapsed_time": "0:27:44", "remaining_time": "0:16:43"}
{"current_steps": 293, "total_steps": 468, "loss": 0.0292, "learning_rate": 6.5038814691908095e-06, "epoch": 0.6250666666666667, "percentage": 62.61, "elapsed_time": "0:27:49", "remaining_time": "0:16:37"}
{"current_steps": 294, "total_steps": 468, "loss": 0.0251, "learning_rate": 6.438991641744531e-06, "epoch": 0.6272, "percentage": 62.82, "elapsed_time": "0:27:54", "remaining_time": "0:16:31"}
{"current_steps": 295, "total_steps": 468, "loss": 0.0301, "learning_rate": 6.374273081654474e-06, "epoch": 0.6293333333333333, "percentage": 63.03, "elapsed_time": "0:28:00", "remaining_time": "0:16:25"}
{"current_steps": 296, "total_steps": 468, "loss": 0.0224, "learning_rate": 6.30972890157177e-06, "epoch": 0.6314666666666666, "percentage": 63.25, "elapsed_time": "0:28:05", "remaining_time": "0:16:19"}
{"current_steps": 297, "total_steps": 468, "loss": 0.0273, "learning_rate": 6.245362205760703e-06, "epoch": 0.6336, "percentage": 63.46, "elapsed_time": "0:28:10", "remaining_time": "0:16:13"}
{"current_steps": 298, "total_steps": 468, "loss": 0.0347, "learning_rate": 6.1811760899494276e-06, "epoch": 0.6357333333333334, "percentage": 63.68, "elapsed_time": "0:28:16", "remaining_time": "0:16:07"}
{"current_steps": 299, "total_steps": 468, "loss": 0.0468, "learning_rate": 6.117173641181064e-06, "epoch": 0.6378666666666667, "percentage": 63.89, "elapsed_time": "0:28:21", "remaining_time": "0:16:01"}
{"current_steps": 300, "total_steps": 468, "loss": 0.0473, "learning_rate": 6.053357937665237e-06, "epoch": 0.64, "percentage": 64.1, "elapsed_time": "0:28:26", "remaining_time": "0:15:55"}
{"current_steps": 301, "total_steps": 468, "loss": 0.0212, "learning_rate": 5.9897320486300195e-06, "epoch": 0.6421333333333333, "percentage": 64.32, "elapsed_time": "0:28:32", "remaining_time": "0:15:49"}
{"current_steps": 302, "total_steps": 468, "loss": 0.0323, "learning_rate": 5.926299034174321e-06, "epoch": 0.6442666666666667, "percentage": 64.53, "elapsed_time": "0:28:37", "remaining_time": "0:15:43"}
{"current_steps": 303, "total_steps": 468, "loss": 0.0361, "learning_rate": 5.863061945120719e-06, "epoch": 0.6464, "percentage": 64.74, "elapsed_time": "0:28:42", "remaining_time": "0:15:38"}
{"current_steps": 304, "total_steps": 468, "loss": 0.0271, "learning_rate": 5.800023822868717e-06, "epoch": 0.6485333333333333, "percentage": 64.96, "elapsed_time": "0:28:48", "remaining_time": "0:15:32"}
{"current_steps": 305, "total_steps": 468, "loss": 0.0277, "learning_rate": 5.737187699248474e-06, "epoch": 0.6506666666666666, "percentage": 65.17, "elapsed_time": "0:28:53", "remaining_time": "0:15:26"}
{"current_steps": 306, "total_steps": 468, "loss": 0.0348, "learning_rate": 5.674556596374993e-06, "epoch": 0.6528, "percentage": 65.38, "elapsed_time": "0:28:58", "remaining_time": "0:15:20"}
{"current_steps": 307, "total_steps": 468, "loss": 0.0378, "learning_rate": 5.612133526502752e-06, "epoch": 0.6549333333333334, "percentage": 65.6, "elapsed_time": "0:29:04", "remaining_time": "0:15:14"}
{"current_steps": 308, "total_steps": 468, "loss": 0.0358, "learning_rate": 5.549921491880856e-06, "epoch": 0.6570666666666667, "percentage": 65.81, "elapsed_time": "0:29:09", "remaining_time": "0:15:08"}
{"current_steps": 309, "total_steps": 468, "loss": 0.0326, "learning_rate": 5.487923484608629e-06, "epoch": 0.6592, "percentage": 66.03, "elapsed_time": "0:29:14", "remaining_time": "0:15:02"}
{"current_steps": 310, "total_steps": 468, "loss": 0.0199, "learning_rate": 5.4261424864917075e-06, "epoch": 0.6613333333333333, "percentage": 66.24, "elapsed_time": "0:29:20", "remaining_time": "0:14:57"}
{"current_steps": 311, "total_steps": 468, "loss": 0.0313, "learning_rate": 5.364581468898629e-06, "epoch": 0.6634666666666666, "percentage": 66.45, "elapsed_time": "0:29:25", "remaining_time": "0:14:51"}
{"current_steps": 312, "total_steps": 468, "loss": 0.0227, "learning_rate": 5.3032433926179395e-06, "epoch": 0.6656, "percentage": 66.67, "elapsed_time": "0:29:30", "remaining_time": "0:14:45"}
{"current_steps": 313, "total_steps": 468, "loss": 0.0351, "learning_rate": 5.242131207715768e-06, "epoch": 0.6677333333333333, "percentage": 66.88, "elapsed_time": "0:29:35", "remaining_time": "0:14:39"}
{"current_steps": 314, "total_steps": 468, "loss": 0.0357, "learning_rate": 5.181247853393961e-06, "epoch": 0.6698666666666667, "percentage": 67.09, "elapsed_time": "0:29:41", "remaining_time": "0:14:33"}
{"current_steps": 315, "total_steps": 468, "loss": 0.0245, "learning_rate": 5.120596257848716e-06, "epoch": 0.672, "percentage": 67.31, "elapsed_time": "0:29:46", "remaining_time": "0:14:27"}
{"current_steps": 316, "total_steps": 468, "loss": 0.0282, "learning_rate": 5.060179338129754e-06, "epoch": 0.6741333333333334, "percentage": 67.52, "elapsed_time": "0:29:51", "remaining_time": "0:14:21"}
{"current_steps": 317, "total_steps": 468, "loss": 0.0304, "learning_rate": 5.000000000000003e-06, "epoch": 0.6762666666666667, "percentage": 67.74, "elapsed_time": "0:29:56", "remaining_time": "0:14:15"}
{"current_steps": 318, "total_steps": 468, "loss": 0.0353, "learning_rate": 4.940061137795876e-06, "epoch": 0.6784, "percentage": 67.95, "elapsed_time": "0:30:02", "remaining_time": "0:14:10"}
{"current_steps": 319, "total_steps": 468, "loss": 0.0231, "learning_rate": 4.8803656342880475e-06, "epoch": 0.6805333333333333, "percentage": 68.16, "elapsed_time": "0:30:07", "remaining_time": "0:14:04"}
{"current_steps": 320, "total_steps": 468, "loss": 0.0275, "learning_rate": 4.82091636054281e-06, "epoch": 0.6826666666666666, "percentage": 68.38, "elapsed_time": "0:30:12", "remaining_time": "0:13:58"}
{"current_steps": 321, "total_steps": 468, "loss": 0.0216, "learning_rate": 4.7617161757839895e-06, "epoch": 0.6848, "percentage": 68.59, "elapsed_time": "0:30:17", "remaining_time": "0:13:52"}
{"current_steps": 322, "total_steps": 468, "loss": 0.0405, "learning_rate": 4.702767927255432e-06, "epoch": 0.6869333333333333, "percentage": 68.8, "elapsed_time": "0:30:22", "remaining_time": "0:13:46"}
{"current_steps": 323, "total_steps": 468, "loss": 0.0256, "learning_rate": 4.644074450084061e-06, "epoch": 0.6890666666666667, "percentage": 69.02, "elapsed_time": "0:30:28", "remaining_time": "0:13:40"}
{"current_steps": 324, "total_steps": 468, "loss": 0.0234, "learning_rate": 4.5856385671435285e-06, "epoch": 0.6912, "percentage": 69.23, "elapsed_time": "0:30:33", "remaining_time": "0:13:34"}
{"current_steps": 325, "total_steps": 468, "loss": 0.0208, "learning_rate": 4.527463088918439e-06, "epoch": 0.6933333333333334, "percentage": 69.44, "elapsed_time": "0:30:38", "remaining_time": "0:13:28"}
{"current_steps": 326, "total_steps": 468, "loss": 0.0264, "learning_rate": 4.469550813369198e-06, "epoch": 0.6954666666666667, "percentage": 69.66, "elapsed_time": "0:30:43", "remaining_time": "0:13:23"}
{"current_steps": 327, "total_steps": 468, "loss": 0.0228, "learning_rate": 4.411904525797408e-06, "epoch": 0.6976, "percentage": 69.87, "elapsed_time": "0:30:48", "remaining_time": "0:13:17"}
{"current_steps": 328, "total_steps": 468, "loss": 0.0339, "learning_rate": 4.354526998711945e-06, "epoch": 0.6997333333333333, "percentage": 70.09, "elapsed_time": "0:30:54", "remaining_time": "0:13:11"}
{"current_steps": 329, "total_steps": 468, "loss": 0.029, "learning_rate": 4.297420991695598e-06, "epoch": 0.7018666666666666, "percentage": 70.3, "elapsed_time": "0:30:59", "remaining_time": "0:13:05"}
{"current_steps": 330, "total_steps": 468, "loss": 0.0218, "learning_rate": 4.240589251272342e-06, "epoch": 0.704, "percentage": 70.51, "elapsed_time": "0:31:04", "remaining_time": "0:12:59"}
{"current_steps": 331, "total_steps": 468, "loss": 0.0206, "learning_rate": 4.184034510775258e-06, "epoch": 0.7061333333333333, "percentage": 70.73, "elapsed_time": "0:31:09", "remaining_time": "0:12:53"}
{"current_steps": 332, "total_steps": 468, "loss": 0.0318, "learning_rate": 4.127759490215057e-06, "epoch": 0.7082666666666667, "percentage": 70.94, "elapsed_time": "0:31:15", "remaining_time": "0:12:48"}
{"current_steps": 333, "total_steps": 468, "loss": 0.019, "learning_rate": 4.0717668961492725e-06, "epoch": 0.7104, "percentage": 71.15, "elapsed_time": "0:31:20", "remaining_time": "0:12:42"}
{"current_steps": 334, "total_steps": 468, "loss": 0.0377, "learning_rate": 4.016059421552082e-06, "epoch": 0.7125333333333334, "percentage": 71.37, "elapsed_time": "0:31:25", "remaining_time": "0:12:36"}
{"current_steps": 335, "total_steps": 468, "loss": 0.0207, "learning_rate": 3.9606397456847875e-06, "epoch": 0.7146666666666667, "percentage": 71.58, "elapsed_time": "0:31:30", "remaining_time": "0:12:30"}
{"current_steps": 336, "total_steps": 468, "loss": 0.0298, "learning_rate": 3.905510533966959e-06, "epoch": 0.7168, "percentage": 71.79, "elapsed_time": "0:31:36", "remaining_time": "0:12:24"}
{"current_steps": 337, "total_steps": 468, "loss": 0.0153, "learning_rate": 3.850674437848243e-06, "epoch": 0.7189333333333333, "percentage": 72.01, "elapsed_time": "0:31:41", "remaining_time": "0:12:19"}
{"current_steps": 338, "total_steps": 468, "loss": 0.0531, "learning_rate": 3.79613409468083e-06, "epoch": 0.7210666666666666, "percentage": 72.22, "elapsed_time": "0:31:46", "remaining_time": "0:12:13"}
{"current_steps": 339, "total_steps": 468, "loss": 0.0328, "learning_rate": 3.7418921275926245e-06, "epoch": 0.7232, "percentage": 72.44, "elapsed_time": "0:31:51", "remaining_time": "0:12:07"}
{"current_steps": 340, "total_steps": 468, "loss": 0.0393, "learning_rate": 3.687951145361073e-06, "epoch": 0.7253333333333334, "percentage": 72.65, "elapsed_time": "0:31:56", "remaining_time": "0:12:01"}
{"current_steps": 341, "total_steps": 468, "loss": 0.0468, "learning_rate": 3.634313742287703e-06, "epoch": 0.7274666666666667, "percentage": 72.86, "elapsed_time": "0:32:02", "remaining_time": "0:11:55"}
{"current_steps": 342, "total_steps": 468, "loss": 0.0299, "learning_rate": 3.5809824980733445e-06, "epoch": 0.7296, "percentage": 73.08, "elapsed_time": "0:32:07", "remaining_time": "0:11:50"}
{"current_steps": 343, "total_steps": 468, "loss": 0.0251, "learning_rate": 3.527959977694061e-06, "epoch": 0.7317333333333333, "percentage": 73.29, "elapsed_time": "0:32:12", "remaining_time": "0:11:44"}
{"current_steps": 344, "total_steps": 468, "loss": 0.0243, "learning_rate": 3.475248731277785e-06, "epoch": 0.7338666666666667, "percentage": 73.5, "elapsed_time": "0:32:18", "remaining_time": "0:11:38"}
{"current_steps": 345, "total_steps": 468, "loss": 0.0251, "learning_rate": 3.422851293981676e-06, "epoch": 0.736, "percentage": 73.72, "elapsed_time": "0:32:23", "remaining_time": "0:11:32"}
{"current_steps": 346, "total_steps": 468, "loss": 0.0211, "learning_rate": 3.3707701858701736e-06, "epoch": 0.7381333333333333, "percentage": 73.93, "elapsed_time": "0:32:28", "remaining_time": "0:11:27"}
{"current_steps": 347, "total_steps": 468, "loss": 0.0384, "learning_rate": 3.3190079117938167e-06, "epoch": 0.7402666666666666, "percentage": 74.15, "elapsed_time": "0:32:33", "remaining_time": "0:11:21"}
{"current_steps": 348, "total_steps": 468, "loss": 0.0482, "learning_rate": 3.2675669612687565e-06, "epoch": 0.7424, "percentage": 74.36, "elapsed_time": "0:32:39", "remaining_time": "0:11:15"}
{"current_steps": 349, "total_steps": 468, "loss": 0.0307, "learning_rate": 3.2164498083570393e-06, "epoch": 0.7445333333333334, "percentage": 74.57, "elapsed_time": "0:32:44", "remaining_time": "0:11:09"}
{"current_steps": 350, "total_steps": 468, "loss": 0.0339, "learning_rate": 3.165658911547592e-06, "epoch": 0.7466666666666667, "percentage": 74.79, "elapsed_time": "0:32:49", "remaining_time": "0:11:04"}
{"current_steps": 351, "total_steps": 468, "loss": 0.0413, "learning_rate": 3.115196713638e-06, "epoch": 0.7488, "percentage": 75.0, "elapsed_time": "0:32:55", "remaining_time": "0:10:58"}
{"current_steps": 352, "total_steps": 468, "loss": 0.0321, "learning_rate": 3.0650656416170155e-06, "epoch": 0.7509333333333333, "percentage": 75.21, "elapsed_time": "0:33:00", "remaining_time": "0:10:52"}
{"current_steps": 353, "total_steps": 468, "loss": 0.0308, "learning_rate": 3.0152681065478252e-06, "epoch": 0.7530666666666667, "percentage": 75.43, "elapsed_time": "0:33:06", "remaining_time": "0:10:47"}
{"current_steps": 354, "total_steps": 468, "loss": 0.0336, "learning_rate": 2.965806503452098e-06, "epoch": 0.7552, "percentage": 75.64, "elapsed_time": "0:33:11", "remaining_time": "0:10:41"}
{"current_steps": 355, "total_steps": 468, "loss": 0.026, "learning_rate": 2.9166832111947953e-06, "epoch": 0.7573333333333333, "percentage": 75.85, "elapsed_time": "0:33:16", "remaining_time": "0:10:35"}
{"current_steps": 356, "total_steps": 468, "loss": 0.0274, "learning_rate": 2.8679005923697444e-06, "epoch": 0.7594666666666666, "percentage": 76.07, "elapsed_time": "0:33:22", "remaining_time": "0:10:29"}
{"current_steps": 357, "total_steps": 468, "loss": 0.0256, "learning_rate": 2.819460993186032e-06, "epoch": 0.7616, "percentage": 76.28, "elapsed_time": "0:33:27", "remaining_time": "0:10:24"}
{"current_steps": 358, "total_steps": 468, "loss": 0.0252, "learning_rate": 2.7713667433551495e-06, "epoch": 0.7637333333333334, "percentage": 76.5, "elapsed_time": "0:33:32", "remaining_time": "0:10:18"}
{"current_steps": 359, "total_steps": 468, "loss": 0.0208, "learning_rate": 2.7236201559789456e-06, "epoch": 0.7658666666666667, "percentage": 76.71, "elapsed_time": "0:33:37", "remaining_time": "0:10:12"}
{"current_steps": 360, "total_steps": 468, "loss": 0.0253, "learning_rate": 2.6762235274383775e-06, "epoch": 0.768, "percentage": 76.92, "elapsed_time": "0:33:42", "remaining_time": "0:10:06"}
{"current_steps": 361, "total_steps": 468, "loss": 0.0209, "learning_rate": 2.629179137283071e-06, "epoch": 0.7701333333333333, "percentage": 77.14, "elapsed_time": "0:33:48", "remaining_time": "0:10:01"}
{"current_steps": 362, "total_steps": 468, "loss": 0.0284, "learning_rate": 2.582489248121677e-06, "epoch": 0.7722666666666667, "percentage": 77.35, "elapsed_time": "0:33:53", "remaining_time": "0:09:55"}
{"current_steps": 363, "total_steps": 468, "loss": 0.028, "learning_rate": 2.5361561055130625e-06, "epoch": 0.7744, "percentage": 77.56, "elapsed_time": "0:33:58", "remaining_time": "0:09:49"}
{"current_steps": 364, "total_steps": 468, "loss": 0.0257, "learning_rate": 2.490181937858296e-06, "epoch": 0.7765333333333333, "percentage": 77.78, "elapsed_time": "0:34:04", "remaining_time": "0:09:44"}
{"current_steps": 365, "total_steps": 468, "loss": 0.0341, "learning_rate": 2.444568956293486e-06, "epoch": 0.7786666666666666, "percentage": 77.99, "elapsed_time": "0:34:09", "remaining_time": "0:09:38"}
{"current_steps": 366, "total_steps": 468, "loss": 0.0234, "learning_rate": 2.3993193545834182e-06, "epoch": 0.7808, "percentage": 78.21, "elapsed_time": "0:34:14", "remaining_time": "0:09:32"}
{"current_steps": 367, "total_steps": 468, "loss": 0.0143, "learning_rate": 2.3544353090160664e-06, "epoch": 0.7829333333333334, "percentage": 78.42, "elapsed_time": "0:34:19", "remaining_time": "0:09:26"}
{"current_steps": 368, "total_steps": 468, "loss": 0.0227, "learning_rate": 2.3099189782979126e-06, "epoch": 0.7850666666666667, "percentage": 78.63, "elapsed_time": "0:34:25", "remaining_time": "0:09:21"}
{"current_steps": 369, "total_steps": 468, "loss": 0.0153, "learning_rate": 2.265772503450122e-06, "epoch": 0.7872, "percentage": 78.85, "elapsed_time": "0:34:30", "remaining_time": "0:09:15"}
{"current_steps": 370, "total_steps": 468, "loss": 0.0268, "learning_rate": 2.2219980077055756e-06, "epoch": 0.7893333333333333, "percentage": 79.06, "elapsed_time": "0:34:35", "remaining_time": "0:09:09"}
{"current_steps": 371, "total_steps": 468, "loss": 0.018, "learning_rate": 2.178597596406752e-06, "epoch": 0.7914666666666667, "percentage": 79.27, "elapsed_time": "0:34:40", "remaining_time": "0:09:04"}
{"current_steps": 372, "total_steps": 468, "loss": 0.042, "learning_rate": 2.1355733569044633e-06, "epoch": 0.7936, "percentage": 79.49, "elapsed_time": "0:34:46", "remaining_time": "0:08:58"}
{"current_steps": 373, "total_steps": 468, "loss": 0.0242, "learning_rate": 2.092927358457476e-06, "epoch": 0.7957333333333333, "percentage": 79.7, "elapsed_time": "0:34:51", "remaining_time": "0:08:52"}
{"current_steps": 374, "total_steps": 468, "loss": 0.0346, "learning_rate": 2.0506616521329803e-06, "epoch": 0.7978666666666666, "percentage": 79.91, "elapsed_time": "0:34:56", "remaining_time": "0:08:46"}
{"current_steps": 375, "total_steps": 468, "loss": 0.0236, "learning_rate": 2.008778270707944e-06, "epoch": 0.8, "percentage": 80.13, "elapsed_time": "0:35:01", "remaining_time": "0:08:41"}
{"current_steps": 376, "total_steps": 468, "loss": 0.0353, "learning_rate": 1.9672792285713528e-06, "epoch": 0.8021333333333334, "percentage": 80.34, "elapsed_time": "0:35:06", "remaining_time": "0:08:35"}
{"current_steps": 377, "total_steps": 468, "loss": 0.0165, "learning_rate": 1.9261665216273197e-06, "epoch": 0.8042666666666667, "percentage": 80.56, "elapsed_time": "0:35:11", "remaining_time": "0:08:29"}
{"current_steps": 378, "total_steps": 468, "loss": 0.0342, "learning_rate": 1.8854421271990964e-06, "epoch": 0.8064, "percentage": 80.77, "elapsed_time": "0:35:16", "remaining_time": "0:08:24"}
{"current_steps": 379, "total_steps": 468, "loss": 0.0262, "learning_rate": 1.845108003933972e-06, "epoch": 0.8085333333333333, "percentage": 80.98, "elapsed_time": "0:35:22", "remaining_time": "0:08:18"}
{"current_steps": 380, "total_steps": 468, "loss": 0.0412, "learning_rate": 1.8051660917090718e-06, "epoch": 0.8106666666666666, "percentage": 81.2, "elapsed_time": "0:35:27", "remaining_time": "0:08:12"}
{"current_steps": 381, "total_steps": 468, "loss": 0.0328, "learning_rate": 1.7656183115380577e-06, "epoch": 0.8128, "percentage": 81.41, "elapsed_time": "0:35:32", "remaining_time": "0:08:06"}
{"current_steps": 382, "total_steps": 468, "loss": 0.0237, "learning_rate": 1.7264665654787405e-06, "epoch": 0.8149333333333333, "percentage": 81.62, "elapsed_time": "0:35:37", "remaining_time": "0:08:01"}
{"current_steps": 383, "total_steps": 468, "loss": 0.0214, "learning_rate": 1.6877127365415924e-06, "epoch": 0.8170666666666667, "percentage": 81.84, "elapsed_time": "0:35:42", "remaining_time": "0:07:55"}
{"current_steps": 384, "total_steps": 468, "loss": 0.0387, "learning_rate": 1.6493586885991908e-06, "epoch": 0.8192, "percentage": 82.05, "elapsed_time": "0:35:47", "remaining_time": "0:07:49"}
{"current_steps": 385, "total_steps": 468, "loss": 0.0317, "learning_rate": 1.6114062662965757e-06, "epoch": 0.8213333333333334, "percentage": 82.26, "elapsed_time": "0:35:52", "remaining_time": "0:07:44"}
{"current_steps": 386, "total_steps": 468, "loss": 0.0347, "learning_rate": 1.5738572949625163e-06, "epoch": 0.8234666666666667, "percentage": 82.48, "elapsed_time": "0:35:58", "remaining_time": "0:07:38"}
{"current_steps": 387, "total_steps": 468, "loss": 0.0384, "learning_rate": 1.536713580521746e-06, "epoch": 0.8256, "percentage": 82.69, "elapsed_time": "0:36:03", "remaining_time": "0:07:32"}
{"current_steps": 388, "total_steps": 468, "loss": 0.0173, "learning_rate": 1.4999769094080853e-06, "epoch": 0.8277333333333333, "percentage": 82.91, "elapsed_time": "0:36:08", "remaining_time": "0:07:27"}
{"current_steps": 389, "total_steps": 468, "loss": 0.0335, "learning_rate": 1.4636490484785316e-06, "epoch": 0.8298666666666666, "percentage": 83.12, "elapsed_time": "0:36:13", "remaining_time": "0:07:21"}
{"current_steps": 390, "total_steps": 468, "loss": 0.0475, "learning_rate": 1.4277317449282834e-06, "epoch": 0.832, "percentage": 83.33, "elapsed_time": "0:36:18", "remaining_time": "0:07:15"}
{"current_steps": 391, "total_steps": 468, "loss": 0.0212, "learning_rate": 1.3922267262067025e-06, "epoch": 0.8341333333333333, "percentage": 83.55, "elapsed_time": "0:36:23", "remaining_time": "0:07:10"}
{"current_steps": 392, "total_steps": 468, "loss": 0.0223, "learning_rate": 1.3571356999342366e-06, "epoch": 0.8362666666666667, "percentage": 83.76, "elapsed_time": "0:36:28", "remaining_time": "0:07:04"}
{"current_steps": 393, "total_steps": 468, "loss": 0.0288, "learning_rate": 1.3224603538202929e-06, "epoch": 0.8384, "percentage": 83.97, "elapsed_time": "0:36:34", "remaining_time": "0:06:58"}
{"current_steps": 394, "total_steps": 468, "loss": 0.0309, "learning_rate": 1.28820235558206e-06, "epoch": 0.8405333333333334, "percentage": 84.19, "elapsed_time": "0:36:39", "remaining_time": "0:06:53"}
{"current_steps": 395, "total_steps": 468, "loss": 0.025, "learning_rate": 1.2543633528643084e-06, "epoch": 0.8426666666666667, "percentage": 84.4, "elapsed_time": "0:36:44", "remaining_time": "0:06:47"}
{"current_steps": 396, "total_steps": 468, "loss": 0.0303, "learning_rate": 1.220944973160133e-06, "epoch": 0.8448, "percentage": 84.62, "elapsed_time": "0:36:49", "remaining_time": "0:06:41"}
{"current_steps": 397, "total_steps": 468, "loss": 0.0275, "learning_rate": 1.1879488237326952e-06, "epoch": 0.8469333333333333, "percentage": 84.83, "elapsed_time": "0:36:54", "remaining_time": "0:06:36"}
{"current_steps": 398, "total_steps": 468, "loss": 0.0258, "learning_rate": 1.1553764915379095e-06, "epoch": 0.8490666666666666, "percentage": 85.04, "elapsed_time": "0:36:59", "remaining_time": "0:06:30"}
{"current_steps": 399, "total_steps": 468, "loss": 0.042, "learning_rate": 1.1232295431481222e-06, "epoch": 0.8512, "percentage": 85.26, "elapsed_time": "0:37:04", "remaining_time": "0:06:24"}
{"current_steps": 400, "total_steps": 468, "loss": 0.0391, "learning_rate": 1.0915095246767692e-06, "epoch": 0.8533333333333334, "percentage": 85.47, "elapsed_time": "0:37:10", "remaining_time": "0:06:19"}
{"current_steps": 401, "total_steps": 468, "loss": 0.0178, "learning_rate": 1.0602179617040098e-06, "epoch": 0.8554666666666667, "percentage": 85.68, "elapsed_time": "0:38:59", "remaining_time": "0:06:30"}
{"current_steps": 402, "total_steps": 468, "loss": 0.0213, "learning_rate": 1.0293563592033595e-06, "epoch": 0.8576, "percentage": 85.9, "elapsed_time": "0:39:04", "remaining_time": "0:06:24"}
{"current_steps": 403, "total_steps": 468, "loss": 0.0323, "learning_rate": 9.989262014693013e-07, "epoch": 0.8597333333333333, "percentage": 86.11, "elapsed_time": "0:39:10", "remaining_time": "0:06:19"}
{"current_steps": 404, "total_steps": 468, "loss": 0.0319, "learning_rate": 9.68928952045909e-07, "epoch": 0.8618666666666667, "percentage": 86.32, "elapsed_time": "0:39:15", "remaining_time": "0:06:13"}
{"current_steps": 405, "total_steps": 468, "loss": 0.0293, "learning_rate": 9.393660536564408e-07, "epoch": 0.864, "percentage": 86.54, "elapsed_time": "0:39:20", "remaining_time": "0:06:07"}
{"current_steps": 406, "total_steps": 468, "loss": 0.0347, "learning_rate": 9.102389281339719e-07, "epoch": 0.8661333333333333, "percentage": 86.75, "elapsed_time": "0:39:25", "remaining_time": "0:06:01"}
{"current_steps": 407, "total_steps": 468, "loss": 0.0412, "learning_rate": 8.815489763529938e-07, "epoch": 0.8682666666666666, "percentage": 86.97, "elapsed_time": "0:39:30", "remaining_time": "0:05:55"}
{"current_steps": 408, "total_steps": 468, "loss": 0.0345, "learning_rate": 8.532975781620511e-07, "epoch": 0.8704, "percentage": 87.18, "elapsed_time": "0:39:36", "remaining_time": "0:05:49"}
{"current_steps": 409, "total_steps": 468, "loss": 0.0272, "learning_rate": 8.254860923173691e-07, "epoch": 0.8725333333333334, "percentage": 87.39, "elapsed_time": "0:39:41", "remaining_time": "0:05:43"}
{"current_steps": 410, "total_steps": 468, "loss": 0.0201, "learning_rate": 7.981158564175074e-07, "epoch": 0.8746666666666667, "percentage": 87.61, "elapsed_time": "0:39:46", "remaining_time": "0:05:37"}
{"current_steps": 411, "total_steps": 468, "loss": 0.0268, "learning_rate": 7.711881868390292e-07, "epoch": 0.8768, "percentage": 87.82, "elapsed_time": "0:39:51", "remaining_time": "0:05:31"}
{"current_steps": 412, "total_steps": 468, "loss": 0.0328, "learning_rate": 7.447043786731867e-07, "epoch": 0.8789333333333333, "percentage": 88.03, "elapsed_time": "0:39:56", "remaining_time": "0:05:25"}
{"current_steps": 413, "total_steps": 468, "loss": 0.021, "learning_rate": 7.18665705663637e-07, "epoch": 0.8810666666666667, "percentage": 88.25, "elapsed_time": "0:40:01", "remaining_time": "0:05:19"}
{"current_steps": 414, "total_steps": 468, "loss": 0.0313, "learning_rate": 6.930734201451817e-07, "epoch": 0.8832, "percentage": 88.46, "elapsed_time": "0:40:07", "remaining_time": "0:05:13"}
{"current_steps": 415, "total_steps": 468, "loss": 0.0344, "learning_rate": 6.679287529835266e-07, "epoch": 0.8853333333333333, "percentage": 88.68, "elapsed_time": "0:40:12", "remaining_time": "0:05:08"}
{"current_steps": 416, "total_steps": 468, "loss": 0.0287, "learning_rate": 6.432329135160953e-07, "epoch": 0.8874666666666666, "percentage": 88.89, "elapsed_time": "0:40:17", "remaining_time": "0:05:02"}
{"current_steps": 417, "total_steps": 468, "loss": 0.0303, "learning_rate": 6.189870894938587e-07, "epoch": 0.8896, "percentage": 89.1, "elapsed_time": "0:40:23", "remaining_time": "0:04:56"}
{"current_steps": 418, "total_steps": 468, "loss": 0.0327, "learning_rate": 5.951924470242121e-07, "epoch": 0.8917333333333334, "percentage": 89.32, "elapsed_time": "0:40:28", "remaining_time": "0:04:50"}
{"current_steps": 419, "total_steps": 468, "loss": 0.0243, "learning_rate": 5.718501305148893e-07, "epoch": 0.8938666666666667, "percentage": 89.53, "elapsed_time": "0:40:33", "remaining_time": "0:04:44"}
{"current_steps": 420, "total_steps": 468, "loss": 0.0331, "learning_rate": 5.489612626189245e-07, "epoch": 0.896, "percentage": 89.74, "elapsed_time": "0:40:39", "remaining_time": "0:04:38"}
{"current_steps": 421, "total_steps": 468, "loss": 0.0363, "learning_rate": 5.265269441806564e-07, "epoch": 0.8981333333333333, "percentage": 89.96, "elapsed_time": "0:40:44", "remaining_time": "0:04:32"}
{"current_steps": 422, "total_steps": 468, "loss": 0.0244, "learning_rate": 5.045482541827828e-07, "epoch": 0.9002666666666667, "percentage": 90.17, "elapsed_time": "0:40:49", "remaining_time": "0:04:27"}
{"current_steps": 423, "total_steps": 468, "loss": 0.029, "learning_rate": 4.830262496944693e-07, "epoch": 0.9024, "percentage": 90.38, "elapsed_time": "0:40:54", "remaining_time": "0:04:21"}
{"current_steps": 424, "total_steps": 468, "loss": 0.0147, "learning_rate": 4.6196196582050543e-07, "epoch": 0.9045333333333333, "percentage": 90.6, "elapsed_time": "0:41:00", "remaining_time": "0:04:15"}
{"current_steps": 425, "total_steps": 468, "loss": 0.0264, "learning_rate": 4.4135641565152265e-07, "epoch": 0.9066666666666666, "percentage": 90.81, "elapsed_time": "0:41:05", "remaining_time": "0:04:09"}
{"current_steps": 426, "total_steps": 468, "loss": 0.0229, "learning_rate": 4.21210590215273e-07, "epoch": 0.9088, "percentage": 91.03, "elapsed_time": "0:41:10", "remaining_time": "0:04:03"}
{"current_steps": 427, "total_steps": 468, "loss": 0.0284, "learning_rate": 4.015254584289585e-07, "epoch": 0.9109333333333334, "percentage": 91.24, "elapsed_time": "0:41:16", "remaining_time": "0:03:57"}
{"current_steps": 428, "total_steps": 468, "loss": 0.0314, "learning_rate": 3.8230196705263734e-07, "epoch": 0.9130666666666667, "percentage": 91.45, "elapsed_time": "0:41:21", "remaining_time": "0:03:51"}
{"current_steps": 429, "total_steps": 468, "loss": 0.0285, "learning_rate": 3.635410406436857e-07, "epoch": 0.9152, "percentage": 91.67, "elapsed_time": "0:41:26", "remaining_time": "0:03:46"}
{"current_steps": 430, "total_steps": 468, "loss": 0.0242, "learning_rate": 3.452435815123323e-07, "epoch": 0.9173333333333333, "percentage": 91.88, "elapsed_time": "0:41:31", "remaining_time": "0:03:40"}
{"current_steps": 431, "total_steps": 468, "loss": 0.0295, "learning_rate": 3.2741046967826205e-07, "epoch": 0.9194666666666667, "percentage": 92.09, "elapsed_time": "0:41:37", "remaining_time": "0:03:34"}
{"current_steps": 432, "total_steps": 468, "loss": 0.0249, "learning_rate": 3.100425628282899e-07, "epoch": 0.9216, "percentage": 92.31, "elapsed_time": "0:41:42", "remaining_time": "0:03:28"}
{"current_steps": 433, "total_steps": 468, "loss": 0.0177, "learning_rate": 2.9314069627511045e-07, "epoch": 0.9237333333333333, "percentage": 92.52, "elapsed_time": "0:41:47", "remaining_time": "0:03:22"}
{"current_steps": 434, "total_steps": 468, "loss": 0.0288, "learning_rate": 2.767056829171255e-07, "epoch": 0.9258666666666666, "percentage": 92.74, "elapsed_time": "0:41:52", "remaining_time": "0:03:16"}
{"current_steps": 435, "total_steps": 468, "loss": 0.0129, "learning_rate": 2.607383131993424e-07, "epoch": 0.928, "percentage": 92.95, "elapsed_time": "0:41:58", "remaining_time": "0:03:11"}
{"current_steps": 436, "total_steps": 468, "loss": 0.0322, "learning_rate": 2.452393550753662e-07, "epoch": 0.9301333333333334, "percentage": 93.16, "elapsed_time": "0:42:03", "remaining_time": "0:03:05"}
{"current_steps": 437, "total_steps": 468, "loss": 0.0291, "learning_rate": 2.302095539704563e-07, "epoch": 0.9322666666666667, "percentage": 93.38, "elapsed_time": "0:42:08", "remaining_time": "0:02:59"}
{"current_steps": 438, "total_steps": 468, "loss": 0.0187, "learning_rate": 2.1564963274568028e-07, "epoch": 0.9344, "percentage": 93.59, "elapsed_time": "0:42:13", "remaining_time": "0:02:53"}
{"current_steps": 439, "total_steps": 468, "loss": 0.0196, "learning_rate": 2.0156029166314316e-07, "epoch": 0.9365333333333333, "percentage": 93.8, "elapsed_time": "0:42:18", "remaining_time": "0:02:47"}
{"current_steps": 440, "total_steps": 468, "loss": 0.0369, "learning_rate": 1.8794220835231413e-07, "epoch": 0.9386666666666666, "percentage": 94.02, "elapsed_time": "0:42:24", "remaining_time": "0:02:41"}
{"current_steps": 441, "total_steps": 468, "loss": 0.043, "learning_rate": 1.7479603777742937e-07, "epoch": 0.9408, "percentage": 94.23, "elapsed_time": "0:42:29", "remaining_time": "0:02:36"}
{"current_steps": 442, "total_steps": 468, "loss": 0.0167, "learning_rate": 1.6212241220599835e-07, "epoch": 0.9429333333333333, "percentage": 94.44, "elapsed_time": "0:42:34", "remaining_time": "0:02:30"}
{"current_steps": 443, "total_steps": 468, "loss": 0.0387, "learning_rate": 1.49921941178387e-07, "epoch": 0.9450666666666667, "percentage": 94.66, "elapsed_time": "0:42:39", "remaining_time": "0:02:24"}
{"current_steps": 444, "total_steps": 468, "loss": 0.0167, "learning_rate": 1.3819521147851122e-07, "epoch": 0.9472, "percentage": 94.87, "elapsed_time": "0:42:45", "remaining_time": "0:02:18"}
{"current_steps": 445, "total_steps": 468, "loss": 0.0147, "learning_rate": 1.2694278710560282e-07, "epoch": 0.9493333333333334, "percentage": 95.09, "elapsed_time": "0:42:50", "remaining_time": "0:02:12"}
{"current_steps": 446, "total_steps": 468, "loss": 0.0405, "learning_rate": 1.1616520924709773e-07, "epoch": 0.9514666666666667, "percentage": 95.3, "elapsed_time": "0:42:55", "remaining_time": "0:02:07"}
{"current_steps": 447, "total_steps": 468, "loss": 0.0335, "learning_rate": 1.0586299625259699e-07, "epoch": 0.9536, "percentage": 95.51, "elapsed_time": "0:43:00", "remaining_time": "0:02:01"}
{"current_steps": 448, "total_steps": 468, "loss": 0.0265, "learning_rate": 9.603664360894327e-08, "epoch": 0.9557333333333333, "percentage": 95.73, "elapsed_time": "0:43:06", "remaining_time": "0:01:55"}
{"current_steps": 449, "total_steps": 468, "loss": 0.0248, "learning_rate": 8.668662391638439e-08, "epoch": 0.9578666666666666, "percentage": 95.94, "elapsed_time": "0:43:11", "remaining_time": "0:01:49"}
{"current_steps": 450, "total_steps": 468, "loss": 0.0185, "learning_rate": 7.781338686584928e-08, "epoch": 0.96, "percentage": 96.15, "elapsed_time": "0:43:16", "remaining_time": "0:01:43"}
{"current_steps": 451, "total_steps": 468, "loss": 0.0341, "learning_rate": 6.94173592173164e-08, "epoch": 0.9621333333333333, "percentage": 96.37, "elapsed_time": "0:43:22", "remaining_time": "0:01:38"}
{"current_steps": 452, "total_steps": 468, "loss": 0.0316, "learning_rate": 6.149894477928909e-08, "epoch": 0.9642666666666667, "percentage": 96.58, "elapsed_time": "0:43:27", "remaining_time": "0:01:32"}
{"current_steps": 453, "total_steps": 468, "loss": 0.0259, "learning_rate": 5.405852438937764e-08, "epoch": 0.9664, "percentage": 96.79, "elapsed_time": "0:43:32", "remaining_time": "0:01:26"}
{"current_steps": 454, "total_steps": 468, "loss": 0.0221, "learning_rate": 4.7096455895976334e-08, "epoch": 0.9685333333333334, "percentage": 97.01, "elapsed_time": "0:43:38", "remaining_time": "0:01:20"}
{"current_steps": 455, "total_steps": 468, "loss": 0.0463, "learning_rate": 4.0613074141059307e-08, "epoch": 0.9706666666666667, "percentage": 97.22, "elapsed_time": "0:43:43", "remaining_time": "0:01:14"}
{"current_steps": 456, "total_steps": 468, "loss": 0.0463, "learning_rate": 3.460869094407127e-08, "epoch": 0.9728, "percentage": 97.44, "elapsed_time": "0:43:48", "remaining_time": "0:01:09"}
{"current_steps": 457, "total_steps": 468, "loss": 0.0328, "learning_rate": 2.9083595086933924e-08, "epoch": 0.9749333333333333, "percentage": 97.65, "elapsed_time": "0:43:54", "remaining_time": "0:01:03"}
{"current_steps": 458, "total_steps": 468, "loss": 0.0316, "learning_rate": 2.403805230015488e-08, "epoch": 0.9770666666666666, "percentage": 97.86, "elapsed_time": "0:43:59", "remaining_time": "0:00:57"}
{"current_steps": 459, "total_steps": 468, "loss": 0.0279, "learning_rate": 1.947230525005006e-08, "epoch": 0.9792, "percentage": 98.08, "elapsed_time": "0:44:04", "remaining_time": "0:00:51"}
{"current_steps": 460, "total_steps": 468, "loss": 0.0207, "learning_rate": 1.5386573527067516e-08, "epoch": 0.9813333333333333, "percentage": 98.29, "elapsed_time": "0:44:10", "remaining_time": "0:00:46"}
{"current_steps": 461, "total_steps": 468, "loss": 0.0341, "learning_rate": 1.178105363523252e-08, "epoch": 0.9834666666666667, "percentage": 98.5, "elapsed_time": "0:44:15", "remaining_time": "0:00:40"}
{"current_steps": 462, "total_steps": 468, "loss": 0.0374, "learning_rate": 8.655918982689582e-09, "epoch": 0.9856, "percentage": 98.72, "elapsed_time": "0:44:20", "remaining_time": "0:00:34"}
{"current_steps": 463, "total_steps": 468, "loss": 0.0337, "learning_rate": 6.011319873370225e-09, "epoch": 0.9877333333333334, "percentage": 98.93, "elapsed_time": "0:44:26", "remaining_time": "0:00:28"}
{"current_steps": 464, "total_steps": 468, "loss": 0.0233, "learning_rate": 3.847383499756552e-09, "epoch": 0.9898666666666667, "percentage": 99.15, "elapsed_time": "0:44:31", "remaining_time": "0:00:23"}
{"current_steps": 465, "total_steps": 468, "loss": 0.0316, "learning_rate": 2.164213936770576e-09, "epoch": 0.992, "percentage": 99.36, "elapsed_time": "0:44:36", "remaining_time": "0:00:17"}
{"current_steps": 466, "total_steps": 468, "loss": 0.0418, "learning_rate": 9.618921367637869e-10, "epoch": 0.9941333333333333, "percentage": 99.57, "elapsed_time": "0:44:41", "remaining_time": "0:00:11"}
{"current_steps": 467, "total_steps": 468, "loss": 0.0284, "learning_rate": 2.404759256247058e-10, "epoch": 0.9962666666666666, "percentage": 99.79, "elapsed_time": "0:44:47", "remaining_time": "0:00:05"}
{"current_steps": 468, "total_steps": 468, "loss": 0.0306, "learning_rate": 0.0, "epoch": 0.9984, "percentage": 100.0, "elapsed_time": "0:44:52", "remaining_time": "0:00:00"}
{"current_steps": 468, "total_steps": 468, "epoch": 0.9984, "percentage": 100.0, "elapsed_time": "0:46:34", "remaining_time": "0:00:00"}