Update README.md
Browse files
README.md
CHANGED
@@ -1,10 +1,10 @@
|
|
1 |
---
|
2 |
license: mit
|
3 |
datasets:
|
4 |
-
- mteb/
|
5 |
language:
|
6 |
- en
|
7 |
-
pipeline_tag: text-
|
8 |
library_name: sentence-transformers
|
9 |
tags:
|
10 |
- mteb
|
@@ -14,57 +14,33 @@ tags:
|
|
14 |
- sparse-encoder
|
15 |
- sparse
|
16 |
- csr
|
|
|
17 |
model-index:
|
18 |
-
- name:
|
19 |
results:
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
- type: ndcg@100
|
40 |
-
value: 0.81514
|
41 |
-
- type: ndcg@1000
|
42 |
-
value: 0.81692
|
43 |
-
- type: map@10
|
44 |
-
value: 0.75662
|
45 |
-
- type: map@100
|
46 |
-
value: 0.7593
|
47 |
-
- type: map@1000
|
48 |
-
value: 0.75937
|
49 |
-
- type: recall@10
|
50 |
-
value: 0.93889
|
51 |
-
- type: recall@100
|
52 |
-
value: 0.98667
|
53 |
-
- type: recall@1000
|
54 |
-
value: 1.0
|
55 |
-
- type: precision@1
|
56 |
-
value: 0.67
|
57 |
-
- type: precision@10
|
58 |
-
value: 0.106
|
59 |
-
- type: mrr@10
|
60 |
-
value: 0.76503
|
61 |
-
- type: main_score
|
62 |
-
value: 0.80426
|
63 |
-
task:
|
64 |
-
type: Retrieval
|
65 |
---
|
66 |
|
67 |
|
|
|
68 |
For more details, including benchmark evaluation, hardware requirements, and inference performance, please refer to our [Github](https://github.com/neilwen987/CSR_Adaptive_Rep).
|
69 |
|
70 |
|
@@ -77,18 +53,23 @@ We recommend using ``Transformers 4.47.0.``
|
|
77 |
You can evaluate this model loaded by Sentence Transformers with the following code snippet:
|
78 |
```python
|
79 |
import mteb
|
80 |
-
from sentence_transformers import
|
81 |
-
model =
|
82 |
-
"Y-Research-Group/CSR-NV_Embed_v2-
|
83 |
trust_remote_code=True
|
84 |
)
|
85 |
model.prompts = {
|
86 |
-
"
|
87 |
}
|
88 |
-
task = mteb.get_tasks(tasks=["
|
89 |
evaluation = mteb.MTEB(tasks=task)
|
90 |
-
evaluation.run(
|
91 |
-
|
|
|
|
|
|
|
|
|
|
|
92 |
```
|
93 |
|
94 |
## Citation
|
|
|
1 |
---
|
2 |
license: mit
|
3 |
datasets:
|
4 |
+
- mteb/banking77
|
5 |
language:
|
6 |
- en
|
7 |
+
pipeline_tag: text-classification
|
8 |
library_name: sentence-transformers
|
9 |
tags:
|
10 |
- mteb
|
|
|
14 |
- sparse-encoder
|
15 |
- sparse
|
16 |
- csr
|
17 |
+
|
18 |
model-index:
|
19 |
+
- name: CSR
|
20 |
results:
|
21 |
+
- dataset:
|
22 |
+
name: MTEB Banking77Classification
|
23 |
+
type: mteb/banking77
|
24 |
+
config: default
|
25 |
+
revision: 0fd18e25b25c072e09e0d92ab615fda904d66300
|
26 |
+
split: test
|
27 |
+
metrics:
|
28 |
+
- type: accuracy
|
29 |
+
value: 0.899545
|
30 |
+
- type: f1
|
31 |
+
value: 0.899018
|
32 |
+
- type: f1_weighted
|
33 |
+
value: 0.899018
|
34 |
+
- type: main_score
|
35 |
+
value: 0.899545
|
36 |
+
task:
|
37 |
+
type: Classification
|
38 |
+
base_model:
|
39 |
+
- nvidia/NV-Embed-v2
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
---
|
41 |
|
42 |
|
43 |
+
|
44 |
For more details, including benchmark evaluation, hardware requirements, and inference performance, please refer to our [Github](https://github.com/neilwen987/CSR_Adaptive_Rep).
|
45 |
|
46 |
|
|
|
53 |
You can evaluate this model loaded by Sentence Transformers with the following code snippet:
|
54 |
```python
|
55 |
import mteb
|
56 |
+
from sentence_transformers import SparseEncoder
|
57 |
+
model = SparseEncoder(
|
58 |
+
"Y-Research-Group/CSR-NV_Embed_v2-Classification-Banking77",
|
59 |
trust_remote_code=True
|
60 |
)
|
61 |
model.prompts = {
|
62 |
+
"Banking77Classification": "Instruct: Given a online banking query, find the corresponding intents\nQuery:"
|
63 |
}
|
64 |
+
task = mteb.get_tasks(tasks=["Banking77Classification"])
|
65 |
evaluation = mteb.MTEB(tasks=task)
|
66 |
+
evaluation.run(
|
67 |
+
model,
|
68 |
+
eval_splits=["test"],
|
69 |
+
output_folder="./results/Banking77Classification",
|
70 |
+
show_progress_bar=True
|
71 |
+
encode_kwargs={"convert_to_sparse_tensor": False, "batch_size": 8}
|
72 |
+
) # MTEB don't support sparse tensors yet, so we need to convert to dense tensors
|
73 |
```
|
74 |
|
75 |
## Citation
|