Veritas2025 commited on
Commit
7e8a1f7
·
verified ·
1 Parent(s): 10a8215

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +36 -55
README.md CHANGED
@@ -1,10 +1,10 @@
1
  ---
2
  license: mit
3
  datasets:
4
- - mteb/scifact
5
  language:
6
  - en
7
- pipeline_tag: text-retrieval
8
  library_name: sentence-transformers
9
  tags:
10
  - mteb
@@ -14,57 +14,33 @@ tags:
14
  - sparse-encoder
15
  - sparse
16
  - csr
 
17
  model-index:
18
- - name: NV-Embed-v2
19
  results:
20
- - dataset:
21
- name: MTEB SciFact
22
- type: mteb/scifact
23
- revision: 0228b52cf27578f30900b9e5271d331663a030d7
24
- config: default
25
- split: test
26
- languages:
27
- - eng-Latn
28
- metrics:
29
- - type: ndcg@1
30
- value: 0.67
31
- - type: ndcg@3
32
- value: 0.7635
33
- - type: ndcg@5
34
- value: 0.78982
35
- - type: ndcg@10
36
- value: 0.80426
37
- - type: ndcg@20
38
- value: 0.80967
39
- - type: ndcg@100
40
- value: 0.81514
41
- - type: ndcg@1000
42
- value: 0.81692
43
- - type: map@10
44
- value: 0.75662
45
- - type: map@100
46
- value: 0.7593
47
- - type: map@1000
48
- value: 0.75937
49
- - type: recall@10
50
- value: 0.93889
51
- - type: recall@100
52
- value: 0.98667
53
- - type: recall@1000
54
- value: 1.0
55
- - type: precision@1
56
- value: 0.67
57
- - type: precision@10
58
- value: 0.106
59
- - type: mrr@10
60
- value: 0.76503
61
- - type: main_score
62
- value: 0.80426
63
- task:
64
- type: Retrieval
65
  ---
66
 
67
 
 
68
  For more details, including benchmark evaluation, hardware requirements, and inference performance, please refer to our [Github](https://github.com/neilwen987/CSR_Adaptive_Rep).
69
 
70
 
@@ -77,18 +53,23 @@ We recommend using ``Transformers 4.47.0.``
77
  You can evaluate this model loaded by Sentence Transformers with the following code snippet:
78
  ```python
79
  import mteb
80
- from sentence_transformers import SentenceTransformer
81
- model = SentenceTransformer(
82
- "Y-Research-Group/CSR-NV_Embed_v2-Retrieval-SciFACT ",
83
  trust_remote_code=True
84
  )
85
  model.prompts = {
86
- "SciFact-query": "Instrcut: Given a scientific claim, retrieve documents that support or refute the claim\nQuery:"
87
  }
88
- task = mteb.get_tasks(tasks=["SciFact"])
89
  evaluation = mteb.MTEB(tasks=task)
90
- evaluation.run(model, eval_splits=["test"], output_folder="./results/SciFact",
91
- batch_size=32, show_progress_bar=True)
 
 
 
 
 
92
  ```
93
 
94
  ## Citation
 
1
  ---
2
  license: mit
3
  datasets:
4
+ - mteb/banking77
5
  language:
6
  - en
7
+ pipeline_tag: text-classification
8
  library_name: sentence-transformers
9
  tags:
10
  - mteb
 
14
  - sparse-encoder
15
  - sparse
16
  - csr
17
+
18
  model-index:
19
+ - name: CSR
20
  results:
21
+ - dataset:
22
+ name: MTEB Banking77Classification
23
+ type: mteb/banking77
24
+ config: default
25
+ revision: 0fd18e25b25c072e09e0d92ab615fda904d66300
26
+ split: test
27
+ metrics:
28
+ - type: accuracy
29
+ value: 0.899545
30
+ - type: f1
31
+ value: 0.899018
32
+ - type: f1_weighted
33
+ value: 0.899018
34
+ - type: main_score
35
+ value: 0.899545
36
+ task:
37
+ type: Classification
38
+ base_model:
39
+ - nvidia/NV-Embed-v2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
40
  ---
41
 
42
 
43
+
44
  For more details, including benchmark evaluation, hardware requirements, and inference performance, please refer to our [Github](https://github.com/neilwen987/CSR_Adaptive_Rep).
45
 
46
 
 
53
  You can evaluate this model loaded by Sentence Transformers with the following code snippet:
54
  ```python
55
  import mteb
56
+ from sentence_transformers import SparseEncoder
57
+ model = SparseEncoder(
58
+ "Y-Research-Group/CSR-NV_Embed_v2-Classification-Banking77",
59
  trust_remote_code=True
60
  )
61
  model.prompts = {
62
+ "Banking77Classification": "Instruct: Given a online banking query, find the corresponding intents\nQuery:"
63
  }
64
+ task = mteb.get_tasks(tasks=["Banking77Classification"])
65
  evaluation = mteb.MTEB(tasks=task)
66
+ evaluation.run(
67
+ model,
68
+ eval_splits=["test"],
69
+ output_folder="./results/Banking77Classification",
70
+ show_progress_bar=True
71
+ encode_kwargs={"convert_to_sparse_tensor": False, "batch_size": 8}
72
+ ) # MTEB don't support sparse tensors yet, so we need to convert to dense tensors
73
  ```
74
 
75
  ## Citation