File size: 4,622 Bytes
c3e7020
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8994329
 
 
 
 
 
 
 
c3e7020
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
---
license: apache-2.0
base_model: jonatasgrosman/wav2vec2-large-xlsr-53-english
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: Wav2Vec2_Fine_tuned_on_RAVDESS_2_Speech_Emotion_Recognition
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# Wav2Vec2_Fine_tuned_on_RAVDESS_2_Speech_Emotion_Recognition

This model is a fine-tuned version of [jonatasgrosman/wav2vec2-large-xlsr-53-english](https://huggingface.co/jonatasgrosman/wav2vec2-large-xlsr-53-english).

The dataset used to fine-tune the original pre-trained model is the [RAVDESS dataset](https://paperswithcode.com/dataset/ravdess). 
This dataset provides 7442 samples of recordings from actors performing on 6 different emotions in English, which are:

```python
emotions = ['angry', 'calm', 'disgust', 'fearful', 'happy', 'neutral', 'sad', 'surprised']
```
It achieves the following results on the evaluation set:
- Loss: 0.5638
- Accuracy: 0.8125

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3.0
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Accuracy |
|:-------------:|:------:|:----:|:---------------:|:--------:|
| 2.1085        | 0.0694 | 10   | 2.0715          | 0.1701   |
| 2.043         | 0.1389 | 20   | 2.0531          | 0.1944   |
| 2.0038        | 0.2083 | 30   | 1.9162          | 0.3056   |
| 1.9217        | 0.2778 | 40   | 1.8085          | 0.3264   |
| 1.7814        | 0.3472 | 50   | 1.6440          | 0.3611   |
| 1.5997        | 0.4167 | 60   | 1.5428          | 0.3681   |
| 1.5293        | 0.4861 | 70   | 1.4812          | 0.4062   |
| 1.5473        | 0.5556 | 80   | 1.3423          | 0.4826   |
| 1.5098        | 0.625  | 90   | 1.3632          | 0.4653   |
| 1.1967        | 0.6944 | 100  | 1.3762          | 0.4618   |
| 1.2255        | 0.7639 | 110  | 1.3456          | 0.4618   |
| 1.6152        | 0.8333 | 120  | 1.3206          | 0.4826   |
| 1.1365        | 0.9028 | 130  | 1.3343          | 0.4792   |
| 1.1254        | 0.9722 | 140  | 1.2481          | 0.4792   |
| 1.3486        | 1.0417 | 150  | 1.4024          | 0.4688   |
| 1.2029        | 1.1111 | 160  | 1.1053          | 0.5556   |
| 1.0734        | 1.1806 | 170  | 1.1238          | 0.6181   |
| 1.029         | 1.25   | 180  | 1.3111          | 0.5347   |
| 1.0955        | 1.3194 | 190  | 1.0256          | 0.6146   |
| 0.8893        | 1.3889 | 200  | 0.9970          | 0.6389   |
| 0.8874        | 1.4583 | 210  | 0.9895          | 0.6389   |
| 0.9227        | 1.5278 | 220  | 0.8335          | 0.6667   |
| 0.7566        | 1.5972 | 230  | 0.8839          | 0.6944   |
| 0.8062        | 1.6667 | 240  | 0.8070          | 0.7118   |
| 0.6773        | 1.7361 | 250  | 0.7592          | 0.7222   |
| 0.7874        | 1.8056 | 260  | 1.1098          | 0.6285   |
| 0.8262        | 1.875  | 270  | 0.6952          | 0.7569   |
| 0.568         | 1.9444 | 280  | 0.7635          | 0.7326   |
| 0.6914        | 2.0139 | 290  | 0.6607          | 0.7917   |
| 0.6838        | 2.0833 | 300  | 0.8466          | 0.7049   |
| 0.6318        | 2.1528 | 310  | 0.6612          | 0.8056   |
| 0.604         | 2.2222 | 320  | 0.9257          | 0.6667   |
| 0.5321        | 2.2917 | 330  | 0.6067          | 0.7986   |
| 0.3421        | 2.3611 | 340  | 0.6594          | 0.7535   |
| 0.3536        | 2.4306 | 350  | 0.6525          | 0.7812   |
| 0.3087        | 2.5    | 360  | 0.6412          | 0.7812   |
| 0.4236        | 2.5694 | 370  | 0.6560          | 0.7812   |
| 0.5134        | 2.6389 | 380  | 0.6614          | 0.7882   |
| 0.5709        | 2.7083 | 390  | 0.5989          | 0.8021   |
| 0.2912        | 2.7778 | 400  | 0.6142          | 0.7951   |
| 0.516         | 2.8472 | 410  | 0.5926          | 0.7986   |
| 0.3835        | 2.9167 | 420  | 0.5797          | 0.8125   |
| 0.4055        | 2.9861 | 430  | 0.5638          | 0.8125   |


### Framework versions

- Transformers 4.41.0.dev0
- Pytorch 2.2.1+cu121
- Datasets 2.19.1.dev0
- Tokenizers 0.19.1