File size: 2,305 Bytes
7d20848
 
 
 
 
a1083e9
 
 
 
 
405aa43
a1083e9
 
 
7d20848
a1083e9
 
 
 
 
 
405aa43
a1083e9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
---
license: other
license_name: microsoft-research-license
license_link: >-
  https://huggingface.co/cognitivecomputations/dolphin-2_6-phi-2/blob/main/LICENSE
library_name: peft
tags:
- llama-factory
- lora
- generated_from_trainer
base_model: cognitivecomputations/dolphin-2_6-phi-2
model-index:
- name: dolphin-2_6-phi-2-sft-glaive-function-calling-v2-ep1-lora
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# dolphin-2_6-phi-2-sft-glaive-function-calling-v2-ep1-lora

This model is a fine-tuned version of [cognitivecomputations/dolphin-2_6-phi-2](https://huggingface.co/cognitivecomputations/dolphin-2_6-phi-2) on the simple-function-calling-v2_convert dataset that I converted for llama_factory https://huggingface.co/datasets/Yhyu13/glaive-function-calling-v2-llama-factory-convert.
It achieves the following results on the evaluation set:
- Loss: 0.3524

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure


The following `bitsandbytes` quantization config was used during training:
- quant_method: QuantizationMethod.BITS_AND_BYTES
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: float16

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- distributed_type: multi-GPU
- num_devices: 2
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- total_eval_batch_size: 2
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- num_epochs: 1.0

### Training results

| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 0.3453        | 1.0   | 376  | 0.3524          |


### Framework versions

- PEFT 0.7.0
- Transformers 4.36.2
- Pytorch 2.1.1+cu121
- Datasets 2.14.7
- Tokenizers 0.15.0