File size: 3,449 Bytes
3304492 1d83712 3304492 1d83712 0aecace 3304492 6986933 1d83712 3304492 821a600 9bc4b67 3304492 1d83712 3304492 1d83712 3304492 1d83712 3304492 0aecace 3304492 1d83712 3304492 1d83712 3304492 1d83712 9bc4b67 1d83712 3304492 1d83712 9bc4b67 1d83712 3304492 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 |
---
license: apache-2.0
library_name: diffusers
---
test under this PR https://github.com/huggingface/diffusers/pull/9672
#### create differential diffusion pipeline
```python
from diffusers.modular_pipelines import ModularPipeline, ComponentsManager
import torch
from diffusers.utils import load_image
repo_id = "YiYiXu/modular-diffdiff-0704"
components = ComponentsManager()
diffdiff_pipeline = ModularPipeline.from_pretrained(repo_id, trust_remote_code=True, components_manager=components, collection="diffdiff")
diffdiff_pipeline.load_default_components(torch_dtype=torch.float16)
components.enable_auto_cpu_offload()
```
#### basic diff-diff
```python
image = load_image("https://huggingface.co/datasets/OzzyGT/testing-resources/resolve/main/differential/20240329211129_4024911930.png?download=true")
mask = load_image("https://huggingface.co/datasets/OzzyGT/testing-resources/resolve/main/differential/gradient_mask.png?download=true")
prompt = "a green pear"
negative_prompt = "blurry"
generator = torch.Generator(device="cuda").manual_seed(42)
image = diffdiff_pipeline(
prompt=prompt,
negative_prompt=negative_prompt,
num_inference_steps=25,
generator=generator,
diffdiff_map=mask,
image=image,
output="images"
)[0]
```

#### ip-adapter
```python
diffdiff_pipeline.load_ip_adapter("h94/IP-Adapter", subfolder="sdxl_models", weight_name="ip-adapter_sdxl.bin")
diffdiff_pipeline.set_ip_adapter_scale(0.6)
ip_adapter_image = load_image("https://huggingface.co/datasets/YiYiXu/testing-images/resolve/main/diffdiff_orange.jpeg")
image = load_image("https://huggingface.co/datasets/OzzyGT/testing-resources/resolve/main/differential/20240329211129_4024911930.png?download=true")
mask = load_image("https://huggingface.co/datasets/OzzyGT/testing-resources/resolve/main/differential/gradient_mask.png?download=true")
prompt = "a green pear"
negative_prompt = "blurry"
generator = torch.Generator(device="cuda").manual_seed(42)
image = diffdiff_pipeline(
prompt=prompt,
negative_prompt=negative_prompt,
num_inference_steps=25,
generator=generator,
ip_adapter_image=ip_adapter_image,
diffdiff_map=mask,
image=image,
output="images"
)[0]
```

#### controlnet
```python
diffdiff_pipeline.unload_ip_adapter()
control_image = load_image("https://huggingface.co/datasets/YiYiXu/testing-images/resolve/main/diffdiff_tomato_canny.png")
image = load_image("https://huggingface.co/datasets/OzzyGT/testing-resources/resolve/main/differential/20240329211129_4024911930.png?download=true")
mask = load_image("https://huggingface.co/datasets/OzzyGT/testing-resources/resolve/main/differential/gradient_mask.png?download=true")
prompt = "a green pear"
negative_prompt = "blurry"
generator = torch.Generator(device="cuda").manual_seed(42)
image = diffdiff_pipeline(
prompt=prompt,
negative_prompt=negative_prompt,
num_inference_steps=25,
generator=generator,
control_image=control_image,
controlnet_conditioning_scale=0.5,
diffdiff_map=mask,
image=image,
output="images"
)[0]
```

|