YosefA commited on
Commit
424e18a
·
verified ·
1 Parent(s): 80c5b62

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +14 -26
README.md CHANGED
@@ -1,34 +1,22 @@
1
- # Amharic Speech-to-Text Transcription
2
-
3
- ## Group 10
4
-
5
- ### Project Description
6
- This project focuses on developing a system for transcribing Amharic speech into text. The system aims to provide accurate and efficient transcription capabilities for the Amharic language, leveraging state-of-the-art technologies in speech recognition and natural language processing.
7
-
8
  ---
9
-
10
- ### Group Members
11
-
12
- | **Name** | **ID** |
13
- |---------------------------|----------------|
14
- | Yosef Ayele Eshetu | UGR/2067/13 |
15
- | Yonas Engdu | UGR/4575/13 |
16
- | Yosef Aweke Dinku | UGR/5887/13 |
17
- | Yosef Muluneh Bane | UGR/5715/13 |
18
-
19
  ---
20
 
21
- ### Technologies
22
- - Python for writing training scripts
23
- - Facebook's Wav2Vec2 as the base model
24
- - SpeechBrain for training
25
 
26
- ---
27
 
28
- ### Datasets Used for Fine-tuning
29
- - `facebook/2M-Belebele`
30
- - `fsicoli/common_voice_19_0`
31
 
32
- ---
33
 
 
34
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ tags:
3
+ - automatic-speech-recognition
4
+ - asr
5
+ - amharic
6
+ - speech-to-text
7
+ - wav2vec2
8
+ - speechbrain
9
+ - social-media
 
 
10
  ---
11
 
12
+ # Amharic Speech-to-Text Transcription Model
 
 
 
13
 
14
+ This model transcribes Amharic speech to text. It's built on **Facebook's Wav2Vec2** and trained using **SpeechBrain**.
15
 
16
+ ## Intended Use
 
 
17
 
18
+ Its main purpose is to transcribe audio from **Instagram, YouTube, and TikTok video content** for further analysis (e.g., trend identification, content moderation).
19
 
20
+ ## Limitations
21
 
22
+ Performance may vary with audio quality, background noise, and informal speech commonly found in social media.