File size: 1,916 Bytes
8a351e3
773324a
8a351e3
27b4975
 
8a351e3
 
7f70e67
8a351e3
 
 
 
 
 
 
 
 
 
773324a
8a351e3
27b4975
 
8a351e3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8b2c166
 
 
8a351e3
 
8b2c166
 
8a351e3
 
 
8b2c166
 
 
 
 
 
 
 
 
 
 
8a351e3
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
---
base_model: microsoft/dit-base-finetuned-rvlcdip
tags:
- image-classification
- vision
- generated_from_trainer
metrics:
- f1
model-index:
- name: donut-base-beans
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# donut-base-beans

This model is a fine-tuned version of [microsoft/dit-base-finetuned-rvlcdip](https://huggingface.co/microsoft/dit-base-finetuned-rvlcdip) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1870
- F1: 0.3826

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0005
- train_batch_size: 128
- eval_batch_size: 128
- seed: 1337
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- training_steps: 30000

### Training results

| Training Loss | Epoch  | Step | Validation Loss | F1     |
|:-------------:|:------:|:----:|:---------------:|:------:|
| No log        | 0.2524 | 500  | 0.1623          | 0.3040 |
| 0.1656        | 0.5048 | 1000 | 0.4307          | nan    |
| 0.1656        | 0.7572 | 1500 | 0.1493          | nan    |
| 0.14          | 1.0096 | 2000 | 0.1870          | 0.3826 |
| 0.14          | 1.2620 | 2500 | 0.1076          | nan    |
| 0.1285        | 1.5144 | 3000 | 0.0896          | 0.3812 |
| 0.1285        | 1.7668 | 3500 | 0.1405          | nan    |
| 0.123         | 2.0192 | 4000 | 0.2061          | nan    |
| 0.123         | 2.2716 | 4500 | 0.2283          | 0.2395 |


### Framework versions

- Transformers 4.43.0.dev0
- Pytorch 2.1.2+cu118
- Datasets 2.20.0
- Tokenizers 0.19.1