File size: 2,014 Bytes
a1fd88a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 |
---
library_name: transformers
tags:
- trl
- generated_from_trainer
model-index:
- name: simpo-baseline-1e-7
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# simpo-baseline-1e-7
This model was trained from scratch on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.4908
- Rewards/chosen: -1.2930
- Rewards/rejected: -1.6583
- Rewards/accuracies: 0.6008
- Rewards/margins: 0.3653
- Logps/rejected: -0.6633
- Logps/chosen: -0.5172
- Logits/rejected: -1.2294
- Logits/chosen: -1.2648
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-06
- train_batch_size: 2
- eval_batch_size: 4
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- gradient_accumulation_steps: 8
- total_train_batch_size: 128
- total_eval_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 1
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen |
|:-------------:|:------:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:|
| 1.502 | 0.9981 | 467 | 1.4908 | -1.2930 | -1.6583 | 0.6008 | 0.3653 | -0.6633 | -0.5172 | -1.2294 | -1.2648 |
### Framework versions
- Transformers 4.44.2
- Pytorch 2.5.1+cu124
- Datasets 3.2.0
- Tokenizers 0.19.1
|