Zoopa commited on
Commit
44116e4
·
verified ·
1 Parent(s): 2131e57

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +59 -64
README.md CHANGED
@@ -1,64 +1,59 @@
1
- ---
2
- library_name: transformers
3
- license: apache-2.0
4
- base_model: distilbert-base-uncased
5
- tags:
6
- - generated_from_trainer
7
- metrics:
8
- - accuracy
9
- model-index:
10
- - name: results
11
- results: []
12
- ---
13
-
14
- <!-- This model card has been generated automatically according to the information the Trainer had access to. You
15
- should probably proofread and complete it, then remove this comment. -->
16
-
17
- # results
18
-
19
- This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset.
20
- It achieves the following results on the evaluation set:
21
- - Loss: 0.1382
22
- - Accuracy: 0.94
23
-
24
- ## Model description
25
-
26
- More information needed
27
-
28
- ## Intended uses & limitations
29
-
30
- More information needed
31
-
32
- ## Training and evaluation data
33
-
34
- More information needed
35
-
36
- ## Training procedure
37
-
38
- ### Training hyperparameters
39
-
40
- The following hyperparameters were used during training:
41
- - learning_rate: 3e-05
42
- - train_batch_size: 32
43
- - eval_batch_size: 32
44
- - seed: 42
45
- - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
46
- - lr_scheduler_type: linear
47
- - num_epochs: 4
48
-
49
- ### Training results
50
-
51
- | Training Loss | Epoch | Step | Validation Loss | Accuracy |
52
- |:-------------:|:-----:|:----:|:---------------:|:--------:|
53
- | 0.511 | 1.0 | 500 | 0.1797 | 0.933 |
54
- | 0.1495 | 2.0 | 1000 | 0.1449 | 0.938 |
55
- | 0.1002 | 3.0 | 1500 | 0.1350 | 0.9415 |
56
- | 0.0707 | 4.0 | 2000 | 0.1382 | 0.94 |
57
-
58
-
59
- ### Framework versions
60
-
61
- - Transformers 4.46.3
62
- - Pytorch 2.5.1+cu118
63
- - Datasets 3.1.0
64
- - Tokenizers 0.20.3
 
1
+ ---
2
+ language: en
3
+ tags:
4
+ - distilbert
5
+ - emotion-classification
6
+ - text-classification
7
+ datasets:
8
+ - dair-ai/emotion
9
+ metrics:
10
+ - accuracy
11
+ ---
12
+
13
+ # Emotion Classification Model
14
+
15
+ ## Model Description
16
+ This model fine-tunes DistilBERT for multi-class emotion classification on the `dair-ai/emotion` dataset.
17
+ The model is designed to classify text into one of six emotions: sadness, joy, love, anger, fear, or surprise.
18
+ It can be used in applications requiring emotional analysis in English text.
19
+
20
+ ## Training and Evaluation
21
+ - **Training Dataset**: `dair-ai/emotion` (16,000 examples)
22
+ - **Training Time**: 8 minutes and 51 seconds
23
+ - **Training Hyperparameters**:
24
+ - Learning Rate: `3e-5`
25
+ - Batch Size: `32`
26
+ - Epochs: `4`
27
+ - Weight Decay: `0.01`
28
+
29
+ ### Training results
30
+
31
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy |
32
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|
33
+ | 0.511 | 1.0 | 500 | 0.1797 | 0.933 |
34
+ | 0.1495 | 2.0 | 1000 | 0.1449 | 0.938 |
35
+ | 0.1002 | 3.0 | 1500 | 0.1350 | 0.9415 |
36
+ | 0.0707 | 4.0 | 2000 | 0.1382 | 0.94 |
37
+
38
+ - **Validation Accuracy**:
39
+ - Epoch 1: 0.9275
40
+ - Epoch 2: 0.9345
41
+ - Epoch 3: 0.940
42
+ - Epoch 4: 0.940
43
+ - **Test Accuracy**: 100% accuracy on the provided 10 test examples.
44
+
45
+
46
+ ## Usage
47
+ ```python
48
+ from transformers import pipeline
49
+ classifier = pipeline("text-classification", model="Zoopa/emotion-classification-model")
50
+
51
+ text = "I am so happy today!"
52
+ result = classifier(text)
53
+ print(result)
54
+ ‘‘‘
55
+
56
+ ## Limitations
57
+ - The model only supports English.
58
+ - The training dataset may contain biases, affecting model predictions on test data.
59
+ - Edge Cases like mixed emotions might reduce accuracy.