Update README.md
Browse files
README.md
CHANGED
@@ -1,64 +1,59 @@
|
|
1 |
-
---
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
-
|
7 |
-
|
8 |
-
-
|
9 |
-
|
10 |
-
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
-
|
22 |
-
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
-
|
42 |
-
-
|
43 |
-
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
- Transformers 4.46.3
|
62 |
-
- Pytorch 2.5.1+cu118
|
63 |
-
- Datasets 3.1.0
|
64 |
-
- Tokenizers 0.20.3
|
|
|
1 |
+
---
|
2 |
+
language: en
|
3 |
+
tags:
|
4 |
+
- distilbert
|
5 |
+
- emotion-classification
|
6 |
+
- text-classification
|
7 |
+
datasets:
|
8 |
+
- dair-ai/emotion
|
9 |
+
metrics:
|
10 |
+
- accuracy
|
11 |
+
---
|
12 |
+
|
13 |
+
# Emotion Classification Model
|
14 |
+
|
15 |
+
## Model Description
|
16 |
+
This model fine-tunes DistilBERT for multi-class emotion classification on the `dair-ai/emotion` dataset.
|
17 |
+
The model is designed to classify text into one of six emotions: sadness, joy, love, anger, fear, or surprise.
|
18 |
+
It can be used in applications requiring emotional analysis in English text.
|
19 |
+
|
20 |
+
## Training and Evaluation
|
21 |
+
- **Training Dataset**: `dair-ai/emotion` (16,000 examples)
|
22 |
+
- **Training Time**: 8 minutes and 51 seconds
|
23 |
+
- **Training Hyperparameters**:
|
24 |
+
- Learning Rate: `3e-5`
|
25 |
+
- Batch Size: `32`
|
26 |
+
- Epochs: `4`
|
27 |
+
- Weight Decay: `0.01`
|
28 |
+
|
29 |
+
### Training results
|
30 |
+
|
31 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
32 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
33 |
+
| 0.511 | 1.0 | 500 | 0.1797 | 0.933 |
|
34 |
+
| 0.1495 | 2.0 | 1000 | 0.1449 | 0.938 |
|
35 |
+
| 0.1002 | 3.0 | 1500 | 0.1350 | 0.9415 |
|
36 |
+
| 0.0707 | 4.0 | 2000 | 0.1382 | 0.94 |
|
37 |
+
|
38 |
+
- **Validation Accuracy**:
|
39 |
+
- Epoch 1: 0.9275
|
40 |
+
- Epoch 2: 0.9345
|
41 |
+
- Epoch 3: 0.940
|
42 |
+
- Epoch 4: 0.940
|
43 |
+
- **Test Accuracy**: 100% accuracy on the provided 10 test examples.
|
44 |
+
|
45 |
+
|
46 |
+
## Usage
|
47 |
+
```python
|
48 |
+
from transformers import pipeline
|
49 |
+
classifier = pipeline("text-classification", model="Zoopa/emotion-classification-model")
|
50 |
+
|
51 |
+
text = "I am so happy today!"
|
52 |
+
result = classifier(text)
|
53 |
+
print(result)
|
54 |
+
‘‘‘
|
55 |
+
|
56 |
+
## Limitations
|
57 |
+
- The model only supports English.
|
58 |
+
- The training dataset may contain biases, affecting model predictions on test data.
|
59 |
+
- Edge Cases like mixed emotions might reduce accuracy.
|
|
|
|
|
|
|
|
|
|