a6047425318
commited on
Commit
•
7063f51
1
Parent(s):
785d1f8
- README.md +94 -0
- config.json +69 -0
- preprocessor_config.json +7 -0
- pytorch_model.bin +3 -0
README.md
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- vision
|
5 |
+
- depth-estimation
|
6 |
+
widget:
|
7 |
+
- src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/tiger.jpg
|
8 |
+
example_title: Tiger
|
9 |
+
- src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/teapot.jpg
|
10 |
+
example_title: Teapot
|
11 |
+
- src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/palace.jpg
|
12 |
+
example_title: Palace
|
13 |
+
---
|
14 |
+
|
15 |
+
# GLPN fine-tuned on NYUv2
|
16 |
+
|
17 |
+
Global-Local Path Networks (GLPN) model trained on NYUv2 for monocular depth estimation. It was introduced in the paper [Global-Local Path Networks for Monocular Depth Estimation with Vertical CutDepth](https://arxiv.org/abs/2201.07436) by Kim et al. and first released in [this repository](https://github.com/vinvino02/GLPDepth).
|
18 |
+
|
19 |
+
Disclaimer: The team releasing GLPN did not write a model card for this model so this model card has been written by the Hugging Face team.
|
20 |
+
|
21 |
+
## Model description
|
22 |
+
|
23 |
+
GLPN uses SegFormer as backbone and adds a lightweight head on top for depth estimation.
|
24 |
+
|
25 |
+
![model image](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/glpn_architecture.jpg)
|
26 |
+
|
27 |
+
## Intended uses & limitations
|
28 |
+
|
29 |
+
You can use the raw model for monocular depth estimation. See the [model hub](https://huggingface.co/models?search=glpn) to look for
|
30 |
+
fine-tuned versions on a task that interests you.
|
31 |
+
|
32 |
+
### How to use
|
33 |
+
|
34 |
+
Here is how to use this model:
|
35 |
+
|
36 |
+
```python
|
37 |
+
from transformers import GLPNFeatureExtractor, GLPNForDepthEstimation
|
38 |
+
import torch
|
39 |
+
import numpy as np
|
40 |
+
from PIL import Image
|
41 |
+
import requests
|
42 |
+
|
43 |
+
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
44 |
+
image = Image.open(requests.get(url, stream=True).raw)
|
45 |
+
|
46 |
+
feature_extractor = GLPNFeatureExtractor.from_pretrained("vinvino02/glpn-nyu")
|
47 |
+
model = GLPNForDepthEstimation.from_pretrained("vinvino02/glpn-nyu")
|
48 |
+
|
49 |
+
# prepare image for the model
|
50 |
+
inputs = feature_extractor(images=image, return_tensors="pt")
|
51 |
+
|
52 |
+
with torch.no_grad():
|
53 |
+
outputs = model(**inputs)
|
54 |
+
predicted_depth = outputs.predicted_depth
|
55 |
+
|
56 |
+
# interpolate to original size
|
57 |
+
prediction = torch.nn.functional.interpolate(
|
58 |
+
predicted_depth.unsqueeze(1),
|
59 |
+
size=image.size[::-1],
|
60 |
+
mode="bicubic",
|
61 |
+
align_corners=False,
|
62 |
+
)
|
63 |
+
|
64 |
+
# visualize the prediction
|
65 |
+
output = prediction.squeeze().cpu().numpy()
|
66 |
+
formatted = (output * 255 / np.max(output)).astype("uint8")
|
67 |
+
depth = Image.fromarray(formatted)
|
68 |
+
```
|
69 |
+
|
70 |
+
For more code examples, we refer to the [documentation](https://huggingface.co/docs/transformers/master/en/model_doc/glpn).
|
71 |
+
|
72 |
+
### BibTeX entry and citation info
|
73 |
+
|
74 |
+
```bibtex
|
75 |
+
@article{DBLP:journals/corr/abs-2201-07436,
|
76 |
+
author = {Doyeon Kim and
|
77 |
+
Woonghyun Ga and
|
78 |
+
Pyunghwan Ahn and
|
79 |
+
Donggyu Joo and
|
80 |
+
Sehwan Chun and
|
81 |
+
Junmo Kim},
|
82 |
+
title = {Global-Local Path Networks for Monocular Depth Estimation with Vertical
|
83 |
+
CutDepth},
|
84 |
+
journal = {CoRR},
|
85 |
+
volume = {abs/2201.07436},
|
86 |
+
year = {2022},
|
87 |
+
url = {https://arxiv.org/abs/2201.07436},
|
88 |
+
eprinttype = {arXiv},
|
89 |
+
eprint = {2201.07436},
|
90 |
+
timestamp = {Fri, 21 Jan 2022 13:57:15 +0100},
|
91 |
+
biburl = {https://dblp.org/rec/journals/corr/abs-2201-07436.bib},
|
92 |
+
bibsource = {dblp computer science bibliography, https://dblp.org}
|
93 |
+
}
|
94 |
+
```
|
config.json
ADDED
@@ -0,0 +1,69 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": [
|
3 |
+
"GLPNForDepthEstimation"
|
4 |
+
],
|
5 |
+
"attention_probs_dropout_prob": 0.0,
|
6 |
+
"classifier_dropout_prob": 0.1,
|
7 |
+
"decoder_hidden_size": 64,
|
8 |
+
"depths": [
|
9 |
+
3,
|
10 |
+
8,
|
11 |
+
27,
|
12 |
+
3
|
13 |
+
],
|
14 |
+
"downsampling_rates": [
|
15 |
+
1,
|
16 |
+
4,
|
17 |
+
8,
|
18 |
+
16
|
19 |
+
],
|
20 |
+
"drop_path_rate": 0.1,
|
21 |
+
"head_in_index": -1,
|
22 |
+
"hidden_act": "gelu",
|
23 |
+
"hidden_dropout_prob": 0.0,
|
24 |
+
"hidden_sizes": [
|
25 |
+
64,
|
26 |
+
128,
|
27 |
+
320,
|
28 |
+
512
|
29 |
+
],
|
30 |
+
"image_size": 224,
|
31 |
+
"initializer_range": 0.02,
|
32 |
+
"layer_norm_eps": 1e-06,
|
33 |
+
"max_depth": 10,
|
34 |
+
"mlp_ratios": [
|
35 |
+
4,
|
36 |
+
4,
|
37 |
+
4,
|
38 |
+
4
|
39 |
+
],
|
40 |
+
"model_type": "glpn",
|
41 |
+
"num_attention_heads": [
|
42 |
+
1,
|
43 |
+
2,
|
44 |
+
5,
|
45 |
+
8
|
46 |
+
],
|
47 |
+
"num_channels": 3,
|
48 |
+
"num_encoder_blocks": 4,
|
49 |
+
"patch_sizes": [
|
50 |
+
7,
|
51 |
+
3,
|
52 |
+
3,
|
53 |
+
3
|
54 |
+
],
|
55 |
+
"sr_ratios": [
|
56 |
+
8,
|
57 |
+
4,
|
58 |
+
2,
|
59 |
+
1
|
60 |
+
],
|
61 |
+
"strides": [
|
62 |
+
4,
|
63 |
+
2,
|
64 |
+
2,
|
65 |
+
2
|
66 |
+
],
|
67 |
+
"torch_dtype": "float32",
|
68 |
+
"transformers_version": "4.18.0.dev0"
|
69 |
+
}
|
preprocessor_config.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"do_rescale": true,
|
3 |
+
"do_resize": true,
|
4 |
+
"feature_extractor_type": "GLPNFeatureExtractor",
|
5 |
+
"resample": 2,
|
6 |
+
"size_divisor": 32
|
7 |
+
}
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c353b12e5f4e5fafd0053d1c19bf60dfb1562b74db4728c6920a2cf44782b603
|
3 |
+
size 245258793
|