|
from fastapi import FastAPI, File, UploadFile, Request |
|
from fastapi.responses import HTMLResponse, JSONResponse |
|
from fastapi.staticfiles import StaticFiles |
|
from fastapi.templating import Jinja2Templates |
|
from PIL import Image |
|
import torch |
|
from transformers import AutoImageProcessor, AutoModelForImageClassification |
|
import io |
|
|
|
app = FastAPI() |
|
|
|
|
|
processor = AutoImageProcessor.from_pretrained("aashituli/promblemo") |
|
model = AutoModelForImageClassification.from_pretrained("aashituli/promblemo") |
|
|
|
|
|
app.mount("/static", StaticFiles(directory="static"), name="static") |
|
templates = Jinja2Templates(directory="templates") |
|
|
|
@app.get("/", response_class=HTMLResponse) |
|
async def home(request: Request): |
|
return templates.TemplateResponse("index.html", {"request": request}) |
|
|
|
@app.post("/predict/") |
|
async def predict(file: UploadFile = File(...)): |
|
try: |
|
contents = await file.read() |
|
image = Image.open(io.BytesIO(contents)).convert("RGB") |
|
inputs = processor(images=image, return_tensors="pt") |
|
|
|
with torch.no_grad(): |
|
outputs = model(**inputs) |
|
|
|
predicted_class_idx = outputs.logits.argmax(-1).item() |
|
predicted_class = model.config.id2label[predicted_class_idx] |
|
|
|
return JSONResponse(content={"prediction": predicted_class}) |
|
|
|
except Exception as e: |
|
return JSONResponse(content={"error": str(e)}, status_code=500) |
|
|