Create train
Browse files
train
ADDED
@@ -0,0 +1,139 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import pandas as pd
|
3 |
+
import torch
|
4 |
+
import numpy as np
|
5 |
+
from PIL import Image
|
6 |
+
from sklearn.metrics import classification_report, confusion_matrix
|
7 |
+
import matplotlib.pyplot as plt
|
8 |
+
import seaborn as sns
|
9 |
+
from torchvision import transforms
|
10 |
+
from transformers import (
|
11 |
+
ViTFeatureExtractor,
|
12 |
+
ViTForImageClassification,
|
13 |
+
Trainer,
|
14 |
+
TrainingArguments,
|
15 |
+
EarlyStoppingCallback,
|
16 |
+
default_data_collator
|
17 |
+
)
|
18 |
+
from datasets import load_dataset, Dataset, DatasetDict
|
19 |
+
from huggingface_hub import HfApi
|
20 |
+
|
21 |
+
# ============ CONFIG ============ #
|
22 |
+
MODEL_NAME = "wambugu71/crop_leaf_diseases_vit"
|
23 |
+
CSV_PATH = "dataset/labels.csv"
|
24 |
+
IMAGE_DIR = "dataset/images"
|
25 |
+
OUTPUT_DIR = "./vit_leaf_disease_model"
|
26 |
+
NUM_EPOCHS = 10
|
27 |
+
BATCH_SIZE = 16
|
28 |
+
LEARNING_RATE = 2e-5
|
29 |
+
SEED = 42
|
30 |
+
|
31 |
+
# Set random seed for reproducibility
|
32 |
+
torch.manual_seed(SEED)
|
33 |
+
np.random.seed(SEED)
|
34 |
+
|
35 |
+
# ============ LOAD DATA ============ #
|
36 |
+
df = pd.read_csv(CSV_PATH)
|
37 |
+
labels = sorted(df['label'].unique())
|
38 |
+
label2id = {label: i for i, label in enumerate(labels)}
|
39 |
+
id2label = {i: label for label, i in label2id.items()}
|
40 |
+
df['label_id'] = df['label'].map(label2id)
|
41 |
+
|
42 |
+
# ============ FEATURE EXTRACTOR & MODEL ============ #
|
43 |
+
feature_extractor = ViTFeatureExtractor.from_pretrained(MODEL_NAME)
|
44 |
+
model = ViTForImageClassification.from_pretrained(
|
45 |
+
MODEL_NAME,
|
46 |
+
num_labels=len(labels),
|
47 |
+
label2id=label2id,
|
48 |
+
id2label=id2label
|
49 |
+
)
|
50 |
+
|
51 |
+
# ============ IMAGE TRANSFORM ============ #
|
52 |
+
def preprocess(example):
|
53 |
+
image_path = os.path.join(IMAGE_DIR, example['image'])
|
54 |
+
image = Image.open(image_path).convert("RGB")
|
55 |
+
inputs = feature_extractor(images=image, return_tensors="pt")
|
56 |
+
example['pixel_values'] = inputs['pixel_values'][0]
|
57 |
+
example['label'] = example['label_id']
|
58 |
+
return example
|
59 |
+
|
60 |
+
# Convert to HF dataset
|
61 |
+
dataset = Dataset.from_pandas(df)
|
62 |
+
dataset = dataset.map(preprocess, remove_columns=['image', 'label', 'label_id'])
|
63 |
+
dataset = dataset.train_test_split(test_size=0.2, seed=SEED)
|
64 |
+
train_ds = dataset['train']
|
65 |
+
eval_ds = dataset['test']
|
66 |
+
|
67 |
+
# ============ METRICS ============ #
|
68 |
+
from evaluate import load
|
69 |
+
accuracy = load("accuracy")
|
70 |
+
|
71 |
+
def compute_metrics(eval_pred):
|
72 |
+
logits, labels = eval_pred
|
73 |
+
predictions = np.argmax(logits, axis=-1)
|
74 |
+
return accuracy.compute(predictions=predictions, references=labels)
|
75 |
+
|
76 |
+
# ============ TRAINING ARGS ============ #
|
77 |
+
training_args = TrainingArguments(
|
78 |
+
output_dir=OUTPUT_DIR,
|
79 |
+
per_device_train_batch_size=BATCH_SIZE,
|
80 |
+
per_device_eval_batch_size=BATCH_SIZE,
|
81 |
+
num_train_epochs=NUM_EPOCHS,
|
82 |
+
evaluation_strategy="epoch",
|
83 |
+
save_strategy="epoch",
|
84 |
+
learning_rate=LEARNING_RATE,
|
85 |
+
logging_dir="./logs",
|
86 |
+
logging_steps=10,
|
87 |
+
save_total_limit=2,
|
88 |
+
load_best_model_at_end=True,
|
89 |
+
metric_for_best_model="accuracy",
|
90 |
+
greater_is_better=True,
|
91 |
+
seed=SEED,
|
92 |
+
report_to="none"
|
93 |
+
)
|
94 |
+
|
95 |
+
# ============ TRAINER ============ #
|
96 |
+
trainer = Trainer(
|
97 |
+
model=model,
|
98 |
+
args=training_args,
|
99 |
+
train_dataset=train_ds,
|
100 |
+
eval_dataset=eval_ds,
|
101 |
+
tokenizer=feature_extractor,
|
102 |
+
data_collator=default_data_collator,
|
103 |
+
compute_metrics=compute_metrics,
|
104 |
+
callbacks=[EarlyStoppingCallback(early_stopping_patience=3)]
|
105 |
+
)
|
106 |
+
|
107 |
+
# ============ TRAIN ============ #
|
108 |
+
trainer.train()
|
109 |
+
|
110 |
+
# ============ SAVE MODEL ============ #
|
111 |
+
model.save_pretrained(OUTPUT_DIR)
|
112 |
+
feature_extractor.save_pretrained(OUTPUT_DIR)
|
113 |
+
|
114 |
+
# ============ EVALUATE ============ #
|
115 |
+
outputs = trainer.predict(eval_ds)
|
116 |
+
preds = np.argmax(outputs.predictions, axis=-1)
|
117 |
+
true_labels = outputs.label_ids
|
118 |
+
|
119 |
+
print("\nClassification Report:\n")
|
120 |
+
print(classification_report(true_labels, preds, target_names=labels))
|
121 |
+
|
122 |
+
# ============ CONFUSION MATRIX ============ #
|
123 |
+
cm = confusion_matrix(true_labels, preds)
|
124 |
+
plt.figure(figsize=(10, 8))
|
125 |
+
sns.heatmap(cm, annot=True, fmt='d', cmap='Blues', xticklabels=labels, yticklabels=labels)
|
126 |
+
plt.xlabel("Predicted")
|
127 |
+
plt.ylabel("True")
|
128 |
+
plt.title("Confusion Matrix")
|
129 |
+
plt.tight_layout()
|
130 |
+
plt.savefig("confusion_matrix.png")
|
131 |
+
plt.show()
|
132 |
+
|
133 |
+
# ============ OPTIONAL: UPLOAD TO HF HUB ============ #
|
134 |
+
# api = HfApi()
|
135 |
+
# api.upload_folder(
|
136 |
+
# folder_path=OUTPUT_DIR,
|
137 |
+
# repo_id="your-username/crop_leaf_disease_vit_finetuned",
|
138 |
+
# repo_type="model"
|
139 |
+
# )
|