c++
commited on
Upload 5 files
Browse files- .gitattributes +2 -0
- RPS_Model.hdf5 +3 -0
- RPS_Part2_VGG16.py +61 -0
- RPS_Part3_VGG16.py +87 -0
- Rock_Paper_Scissors_VGG16.py +186 -0
- best_weights.hdf5 +3 -0
.gitattributes
CHANGED
|
@@ -33,3 +33,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 36 |
+
best_weights.hdf5 filter=lfs diff=lfs merge=lfs -text
|
| 37 |
+
RPS_Model.hdf5 filter=lfs diff=lfs merge=lfs -text
|
RPS_Model.hdf5
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:14728323d0ac51a38b137351c5bd10f5135a23229ba6a913fbdac332f0a09e92
|
| 3 |
+
size 165984992
|
RPS_Part2_VGG16.py
ADDED
|
@@ -0,0 +1,61 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import sys
|
| 2 |
+
import os
|
| 3 |
+
import numpy as np
|
| 4 |
+
import tensorflow as tf
|
| 5 |
+
from keras_preprocessing import image
|
| 6 |
+
from matplotlib import pyplot as plt
|
| 7 |
+
|
| 8 |
+
# Part 2
|
| 9 |
+
# a) The tested image is to be supplied via the arguments list
|
| 10 |
+
# b) visualisation of the supplied image with the prediction score and predicted label
|
| 11 |
+
|
| 12 |
+
# Loading the pre-trained model/best saved weight and perform Prediction
|
| 13 |
+
# model = tf.keras.models.load_model('../Rock_Paper_Scissors_VGG16/RPS_Model.hdf5')
|
| 14 |
+
model = tf.keras.models.load_model('../Rock_Paper_Scissors_VGG16/best_weights.hdf5')
|
| 15 |
+
img_width, img_height = 224, 224
|
| 16 |
+
|
| 17 |
+
|
| 18 |
+
# Predict function
|
| 19 |
+
def predict_image(image_input, model):
|
| 20 |
+
if image_input is None or image_input == '':
|
| 21 |
+
print("Invalid type")
|
| 22 |
+
return None
|
| 23 |
+
# putting the images in an array
|
| 24 |
+
img_array = image.img_to_array(image_input)
|
| 25 |
+
processed_img = tf.reshape(img_array, shape=[1, img_width, img_height, 3])
|
| 26 |
+
|
| 27 |
+
# It uses the model to predict the class probabilities for the processed image.
|
| 28 |
+
predict_proba = np.max(model.predict(processed_img)[0])
|
| 29 |
+
# It identifies the predicted class index and its corresponding label.
|
| 30 |
+
predict_class = np.argmax(model.predict(processed_img))
|
| 31 |
+
|
| 32 |
+
# Map predicted class index to label
|
| 33 |
+
class_labels = ['Paper', 'Rock', 'Scissors']
|
| 34 |
+
predict_label = class_labels[predict_class]
|
| 35 |
+
|
| 36 |
+
# It plots the input image with its predicted class label and displays the image without axis ticks.
|
| 37 |
+
plt.figure(figsize=(4, 4))
|
| 38 |
+
plt.imshow(img)
|
| 39 |
+
plt.axis('off')
|
| 40 |
+
plt.title(f'Predicted Class: {predict_label}')
|
| 41 |
+
plt.show()
|
| 42 |
+
|
| 43 |
+
# Print prediction result and probability
|
| 44 |
+
print("\nImage prediction result:", predict_label)
|
| 45 |
+
print("Probability:", round(predict_proba * 100, 2), "%")
|
| 46 |
+
print('\n')
|
| 47 |
+
|
| 48 |
+
|
| 49 |
+
# asking the user for their desired folder location
|
| 50 |
+
if __name__ == "__main__":
|
| 51 |
+
image_path = ''
|
| 52 |
+
if len(sys.argv) != 2:
|
| 53 |
+
image_path = input("Enter the path to the image file: ")
|
| 54 |
+
if input() == '':
|
| 55 |
+
image_path = '../rps/test'
|
| 56 |
+
# it collects 21 random images from the folder
|
| 57 |
+
for filename in os.listdir(image_path)[0:20]:
|
| 58 |
+
filepath = os.path.join(image_path, filename)
|
| 59 |
+
# it sends the images and loaded model to prediction function
|
| 60 |
+
img = image.load_img(filepath, target_size=(img_width, img_height))
|
| 61 |
+
predict_image(img, model)
|
RPS_Part3_VGG16.py
ADDED
|
@@ -0,0 +1,87 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import random
|
| 3 |
+
import matplotlib.pyplot as plt
|
| 4 |
+
import numpy as np
|
| 5 |
+
import tensorflow as tf
|
| 6 |
+
from keras_preprocessing import image
|
| 7 |
+
|
| 8 |
+
# Part 3
|
| 9 |
+
# a) Read two images of hand signs provided as script arguments
|
| 10 |
+
# b) Predict the labels of the two images
|
| 11 |
+
# c) Output which image won the rock, paper, scissor game
|
| 12 |
+
|
| 13 |
+
# Loading the pre-trained model/best saved weight and perform Prediction
|
| 14 |
+
# vgg16_model = tf.keras.models.load_model('../Rock_Paper_Scissors_VGG16/RPS_Model.hdf5')
|
| 15 |
+
vgg16_model = tf.keras.models.load_model('../Rock_Paper_Scissors_VGG16/best_weights.hdf5')
|
| 16 |
+
img_width, img_height = 224, 224
|
| 17 |
+
# Define labels and Image addresses
|
| 18 |
+
class_labels = ['paper', 'rock', 'scissors']
|
| 19 |
+
folder_path = '../rps/test'
|
| 20 |
+
|
| 21 |
+
|
| 22 |
+
# Get a random Image from Folder
|
| 23 |
+
def selectRandomPicture(folder_path):
|
| 24 |
+
files = os.listdir(folder_path)
|
| 25 |
+
image_files = [file for file in files if file.lower().endswith(('.png', '.jpg', '.jpeg'))]
|
| 26 |
+
random_photo = random.choice(image_files)
|
| 27 |
+
return os.path.join(folder_path, random_photo)
|
| 28 |
+
|
| 29 |
+
|
| 30 |
+
# Function to load and preprocess images
|
| 31 |
+
def load_and_preprocess_image(image_path):
|
| 32 |
+
img = image.load_img(image_path, target_size=(img_width, img_height))
|
| 33 |
+
img_array = image.img_to_array(img)
|
| 34 |
+
img_array /= 255.0 # Normalize pixel values
|
| 35 |
+
|
| 36 |
+
return img_array
|
| 37 |
+
|
| 38 |
+
|
| 39 |
+
# A simple condition/rules to decide who’s the winner
|
| 40 |
+
def whos_winner(first_image, second_image):
|
| 41 |
+
winner = ''
|
| 42 |
+
if first_image == second_image:
|
| 43 |
+
winner = "Tie!!"
|
| 44 |
+
|
| 45 |
+
elif (first_image == 'rock' and second_image == 'scissors' or
|
| 46 |
+
first_image == 'scissors' and second_image == 'rock'):
|
| 47 |
+
winner = "Rock wins"
|
| 48 |
+
|
| 49 |
+
elif (first_image == 'rock' and second_image == 'paper' or
|
| 50 |
+
first_image == 'paper' and second_image == 'rock'):
|
| 51 |
+
winner = "Paper wins"
|
| 52 |
+
|
| 53 |
+
elif (first_image == 'paper' and second_image == 'scissors' or
|
| 54 |
+
first_image == 'scissors' and second_image == 'paper'):
|
| 55 |
+
winner = "Scissors wins"
|
| 56 |
+
|
| 57 |
+
return winner
|
| 58 |
+
|
| 59 |
+
|
| 60 |
+
# Read and preprocess the images and put 2 images in separate variables
|
| 61 |
+
image1 = load_and_preprocess_image(selectRandomPicture(folder_path))
|
| 62 |
+
image2 = load_and_preprocess_image(selectRandomPicture(folder_path))
|
| 63 |
+
|
| 64 |
+
# Predict the labels of the images
|
| 65 |
+
images = np.array([image1, image2])
|
| 66 |
+
predictions = vgg16_model.predict(images)
|
| 67 |
+
predicted_classes = np.argmax(predictions, axis=1)
|
| 68 |
+
|
| 69 |
+
firs_img = class_labels[predicted_classes[0]]
|
| 70 |
+
sec_img = class_labels[predicted_classes[1]]
|
| 71 |
+
|
| 72 |
+
# Plot the images
|
| 73 |
+
plt.figure(figsize=(8, 5))
|
| 74 |
+
plt.subplot(1, 2, 1)
|
| 75 |
+
plt.imshow(image1)
|
| 76 |
+
plt.title(class_labels[predicted_classes[0]])
|
| 77 |
+
plt.axis('off')
|
| 78 |
+
# Plot/Display the last result
|
| 79 |
+
plt.subplot(1, 2, 2)
|
| 80 |
+
plt.imshow(image2)
|
| 81 |
+
plt.title(class_labels[predicted_classes[1]])
|
| 82 |
+
plt.axis('off')
|
| 83 |
+
plt.tight_layout()
|
| 84 |
+
plt.suptitle(f'{whos_winner(firs_img, sec_img)}!')
|
| 85 |
+
plt.show()
|
| 86 |
+
|
| 87 |
+
print(f'The winner is:{whos_winner(firs_img, sec_img)}')
|
Rock_Paper_Scissors_VGG16.py
ADDED
|
@@ -0,0 +1,186 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import numpy as np
|
| 3 |
+
from keras import applications, Sequential
|
| 4 |
+
from keras.callbacks import ReduceLROnPlateau, EarlyStopping, ModelCheckpoint
|
| 5 |
+
from keras.layers import Dense, Dropout, Flatten, BatchNormalization
|
| 6 |
+
from keras.optimizers import Adam, SGD
|
| 7 |
+
from keras.preprocessing.image import ImageDataGenerator
|
| 8 |
+
from keras.regularizers import l2
|
| 9 |
+
from matplotlib import pyplot as plt
|
| 10 |
+
from sklearn.metrics import classification_report, confusion_matrix
|
| 11 |
+
|
| 12 |
+
# Part 1
|
| 13 |
+
# a) visualized samples from the dataset, i.e.: rock, paper, scissors hand signs
|
| 14 |
+
# with the appropriate labels
|
| 15 |
+
# b) summary of the model architecture in a form of a plot or text
|
| 16 |
+
# c) model accuracy evaluation plot after the training concludes
|
| 17 |
+
# d) model loss evaluation plot after the training concludes
|
| 18 |
+
|
| 19 |
+
|
| 20 |
+
# Image directory's and defining the dimensions & Batch size as well as epochs
|
| 21 |
+
base_dir = '../rps'
|
| 22 |
+
train_dir = os.path.join(base_dir, 'train')
|
| 23 |
+
valid_dir = os.path.join(base_dir, 'validation')
|
| 24 |
+
BATCH_SIZE = 32
|
| 25 |
+
EPOCHS = 7
|
| 26 |
+
img_width, img_height = 224, 224
|
| 27 |
+
# Define L2 regularization coefficient to prevent overfitting
|
| 28 |
+
l2_reg = 0.00001
|
| 29 |
+
|
| 30 |
+
# Optimization + Learning rate variables
|
| 31 |
+
opt = Adam(learning_rate=1e-4)
|
| 32 |
+
opt1 = Adam(learning_rate=2e-4)
|
| 33 |
+
opt2 = Adam(learning_rate=0.0001)
|
| 34 |
+
opt3 = SGD(learning_rate=1e-4, momentum=0.99)
|
| 35 |
+
|
| 36 |
+
# Preparing the Train/Validation and Augmentation Data
|
| 37 |
+
train_datagen = ImageDataGenerator(
|
| 38 |
+
rescale=1.0 / 255,
|
| 39 |
+
rotation_range=90,
|
| 40 |
+
zoom_range=0.1,
|
| 41 |
+
width_shift_range=0.2,
|
| 42 |
+
height_shift_range=0.2,
|
| 43 |
+
shear_range=0.2,
|
| 44 |
+
# horizontal_flip=True,
|
| 45 |
+
vertical_flip=True,
|
| 46 |
+
brightness_range=(0.2, 1),
|
| 47 |
+
fill_mode='nearest',
|
| 48 |
+
validation_split=0.2)
|
| 49 |
+
|
| 50 |
+
train_generator = train_datagen.flow_from_directory(
|
| 51 |
+
train_dir,
|
| 52 |
+
shuffle=True,
|
| 53 |
+
target_size=(img_width, img_height),
|
| 54 |
+
batch_size=BATCH_SIZE,
|
| 55 |
+
class_mode='categorical',
|
| 56 |
+
subset='training')
|
| 57 |
+
|
| 58 |
+
# a) Visualize samples from the dataset
|
| 59 |
+
class_names = ['paper', 'rock', 'scissors']
|
| 60 |
+
images, labels = train_generator.next()
|
| 61 |
+
plt.figure(figsize=(10, 10))
|
| 62 |
+
for i in range(9):
|
| 63 |
+
plt.subplot(3, 3, i + 1)
|
| 64 |
+
label_index = np.argmax(labels[i])
|
| 65 |
+
plt.title('Label: ' + class_names[label_index])
|
| 66 |
+
plt.imshow(images[i])
|
| 67 |
+
plt.tight_layout()
|
| 68 |
+
plt.axis('off')
|
| 69 |
+
plt.show()
|
| 70 |
+
|
| 71 |
+
validation_datagen = ImageDataGenerator(rescale=1.0 / 255)
|
| 72 |
+
validation_generator = validation_datagen.flow_from_directory(
|
| 73 |
+
valid_dir,
|
| 74 |
+
target_size=(img_width, img_height),
|
| 75 |
+
batch_size=BATCH_SIZE,
|
| 76 |
+
class_mode='categorical')
|
| 77 |
+
|
| 78 |
+
# -------Callbacks-------------#
|
| 79 |
+
# It'll save the best trained weight
|
| 80 |
+
checkpoint = ModelCheckpoint(
|
| 81 |
+
filepath='best_weights.hdf5',
|
| 82 |
+
monitor='val_loss',
|
| 83 |
+
verbose=1,
|
| 84 |
+
save_best_only=True,
|
| 85 |
+
mode='min',
|
| 86 |
+
save_weights_only=False
|
| 87 |
+
)
|
| 88 |
+
# Early stop = in case of high Validation Loss
|
| 89 |
+
early_stop = EarlyStopping(
|
| 90 |
+
monitor='val_loss',
|
| 91 |
+
min_delta=0.001,
|
| 92 |
+
patience=5,
|
| 93 |
+
verbose=1,
|
| 94 |
+
mode='auto'
|
| 95 |
+
)
|
| 96 |
+
# Defining a learning rate reduction callback when its necessary it'll reduce
|
| 97 |
+
# the learning rate when its necessary
|
| 98 |
+
lr_reduction = ReduceLROnPlateau(
|
| 99 |
+
monitor='val_loss',
|
| 100 |
+
factor=0.2,
|
| 101 |
+
patience=2,
|
| 102 |
+
verbose=1,
|
| 103 |
+
mode='auto',
|
| 104 |
+
cooldown=1,
|
| 105 |
+
min_lr=0.000001
|
| 106 |
+
)
|
| 107 |
+
callbacks = [checkpoint, early_stop, lr_reduction]
|
| 108 |
+
|
| 109 |
+
# Load the pre-trained VGG16 model without the top layer
|
| 110 |
+
base_model = applications.VGG16(weights='imagenet', include_top=False, pooling='max',
|
| 111 |
+
input_shape=(img_width, img_height, 3))
|
| 112 |
+
|
| 113 |
+
# Freeze the pre-trained layers from 0-14,
|
| 114 |
+
# so they are not updated during training
|
| 115 |
+
for layer in base_model.layers[:10]:
|
| 116 |
+
layer.trainable = False
|
| 117 |
+
# b) summary of base model
|
| 118 |
+
base_model.summary()
|
| 119 |
+
|
| 120 |
+
# Adding custom layers on top of VGG16
|
| 121 |
+
model = Sequential()
|
| 122 |
+
model.add(base_model)
|
| 123 |
+
model.add(Flatten())
|
| 124 |
+
model.add(Dense(512, activation='relu', kernel_regularizer=l2(l2_reg)))
|
| 125 |
+
model.add(BatchNormalization())
|
| 126 |
+
model.add(Dropout(0.3))
|
| 127 |
+
model.add(Dense(3, activation='softmax', kernel_regularizer=l2(l2_reg)))
|
| 128 |
+
# b) summary of model
|
| 129 |
+
model.summary()
|
| 130 |
+
|
| 131 |
+
# Compile the model
|
| 132 |
+
model.compile(optimizer=opt,
|
| 133 |
+
loss='categorical_crossentropy',
|
| 134 |
+
metrics=['accuracy'])
|
| 135 |
+
|
| 136 |
+
# Finally we train the model with our desired adjustments
|
| 137 |
+
history = model.fit(
|
| 138 |
+
train_generator,
|
| 139 |
+
epochs=EPOCHS,
|
| 140 |
+
callbacks=callbacks,
|
| 141 |
+
validation_data=validation_generator)
|
| 142 |
+
|
| 143 |
+
|
| 144 |
+
# Plotting the Models 'accuracy' & 'loss'
|
| 145 |
+
def eval_plot(history):
|
| 146 |
+
plt.figure(figsize=(14, 5))
|
| 147 |
+
|
| 148 |
+
# Accuracy plot
|
| 149 |
+
plt.subplot(1, 2, 1)
|
| 150 |
+
acc = history.history['accuracy']
|
| 151 |
+
val_acc = history.history['val_accuracy']
|
| 152 |
+
epochs = range(len(acc))
|
| 153 |
+
acc_plot, = plt.plot(epochs, acc, 'r')
|
| 154 |
+
val_acc_plot, = plt.plot(epochs, val_acc, 'b')
|
| 155 |
+
plt.title('Training and Validation Accuracy')
|
| 156 |
+
plt.legend([acc_plot, val_acc_plot], ['Training Accuracy', 'Validation Accuracy'])
|
| 157 |
+
|
| 158 |
+
# Loss plot
|
| 159 |
+
plt.subplot(1, 2, 2)
|
| 160 |
+
loss = history.history['loss']
|
| 161 |
+
val_loss = history.history['val_loss']
|
| 162 |
+
epochs = range(len(loss))
|
| 163 |
+
loss_plot, = plt.plot(epochs, loss, 'r')
|
| 164 |
+
val_loss_plot, = plt.plot(epochs, val_loss, 'b')
|
| 165 |
+
plt.title('Training and Validation Loss')
|
| 166 |
+
plt.legend([loss_plot, val_loss_plot], ['Training Loss', 'Validation Loss'])
|
| 167 |
+
plt.tight_layout()
|
| 168 |
+
plt.show()
|
| 169 |
+
|
| 170 |
+
|
| 171 |
+
# Evaluate the Process to find out how well the model has been trained
|
| 172 |
+
def evaluate(model):
|
| 173 |
+
num_of_test_samples = len(validation_generator.filenames)
|
| 174 |
+
|
| 175 |
+
y_pred = model.predict(validation_generator, num_of_test_samples // BATCH_SIZE + 1)
|
| 176 |
+
y_pred = np.argmax(y_pred, axis=1)
|
| 177 |
+
print('\nConfusion Matrix\n')
|
| 178 |
+
print(confusion_matrix(validation_generator.classes, y_pred))
|
| 179 |
+
print('\n\nClassification Report\n')
|
| 180 |
+
target_names = ['Paper', 'Rock', 'Scissors']
|
| 181 |
+
print(classification_report(validation_generator.classes, y_pred, target_names=target_names))
|
| 182 |
+
|
| 183 |
+
|
| 184 |
+
eval_plot(history)
|
| 185 |
+
evaluate(model)
|
| 186 |
+
model.save('../Rock_Paper_Scissors_VGG16/RPS_Model.hdf5')
|
best_weights.hdf5
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:bf61b1d4dad01b6cc0ed83fc6b4aa8167540e9fadcdafda8a765eb56bda7ca85
|
| 3 |
+
size 165984992
|