File size: 2,557 Bytes
a0b0ca3
 
e3a5eb6
a0b0ca3
 
 
 
 
 
 
 
 
 
 
 
 
 
e3a5eb6
a0b0ca3
e3a5eb6
 
a0b0ca3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e3a5eb6
a0b0ca3
 
 
 
 
e3a5eb6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a0b0ca3
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
---
license: mit
base_model: thenlper/gte-base
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: gte-base-clickbait-task1-post
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# gte-base-clickbait-task1-post

This model is a fine-tuned version of [thenlper/gte-base](https://huggingface.co/thenlper/gte-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 2.4369
- Accuracy: 0.69

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 20

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log        | 1.0   | 200  | 0.8074          | 0.6575   |
| No log        | 2.0   | 400  | 0.7113          | 0.7225   |
| 0.7726        | 3.0   | 600  | 0.7627          | 0.7375   |
| 0.7726        | 4.0   | 800  | 0.9634          | 0.72     |
| 0.268         | 5.0   | 1000 | 1.2732          | 0.6925   |
| 0.268         | 6.0   | 1200 | 1.5238          | 0.715    |
| 0.268         | 7.0   | 1400 | 1.8239          | 0.6875   |
| 0.0465        | 8.0   | 1600 | 1.9875          | 0.7      |
| 0.0465        | 9.0   | 1800 | 2.1233          | 0.68     |
| 0.0147        | 10.0  | 2000 | 2.1624          | 0.6775   |
| 0.0147        | 11.0  | 2200 | 2.3234          | 0.6725   |
| 0.0147        | 12.0  | 2400 | 2.2247          | 0.6975   |
| 0.0087        | 13.0  | 2600 | 2.3189          | 0.685    |
| 0.0087        | 14.0  | 2800 | 2.3079          | 0.69     |
| 0.0055        | 15.0  | 3000 | 2.4370          | 0.6825   |
| 0.0055        | 16.0  | 3200 | 2.4838          | 0.6775   |
| 0.0055        | 17.0  | 3400 | 2.4335          | 0.6775   |
| 0.0047        | 18.0  | 3600 | 2.4259          | 0.6775   |
| 0.0047        | 19.0  | 3800 | 2.4417          | 0.6825   |
| 0.0043        | 20.0  | 4000 | 2.4369          | 0.69     |


### Framework versions

- Transformers 4.44.0.dev0
- Pytorch 2.4.0+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1