--- library_name: transformers license: mit base_model: intfloat/e5-small tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: intfloat-e5-small-arabic-fp16 results: [] --- # intfloat-e5-small-arabic-fp16 This model is a fine-tuned version of [intfloat/e5-small](https://huggingface.co/intfloat/e5-small) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.7833 - Accuracy: 0.6782 - Precision: 0.6650 - Recall: 0.6782 - F1: 0.6560 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 128 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.3 - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:------:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | 1.0984 | 0.3636 | 50 | 1.0847 | 0.4373 | 0.5309 | 0.4373 | 0.2662 | | 1.069 | 0.7273 | 100 | 1.0270 | 0.5677 | 0.6816 | 0.5677 | 0.4864 | | 1.0003 | 1.0873 | 150 | 0.9488 | 0.6041 | 0.6923 | 0.6041 | 0.5281 | | 0.9438 | 1.4509 | 200 | 0.9085 | 0.6095 | 0.7017 | 0.6095 | 0.5340 | | 0.9178 | 1.8145 | 250 | 0.9204 | 0.5895 | 0.6283 | 0.5895 | 0.5182 | | 0.8936 | 2.1745 | 300 | 0.8394 | 0.6441 | 0.5970 | 0.6441 | 0.5653 | | 0.8824 | 2.5382 | 350 | 0.8447 | 0.6464 | 0.7275 | 0.6464 | 0.5674 | | 0.8774 | 2.9018 | 400 | 0.8706 | 0.625 | 0.6165 | 0.625 | 0.5859 | | 0.8655 | 3.2618 | 450 | 0.8125 | 0.6541 | 0.6337 | 0.6541 | 0.6378 | | 0.8517 | 3.6255 | 500 | 0.8528 | 0.6477 | 0.6565 | 0.6477 | 0.6013 | | 0.8451 | 3.9891 | 550 | 0.7914 | 0.6686 | 0.6502 | 0.6686 | 0.6340 | | 0.8084 | 4.3491 | 600 | 0.7833 | 0.6782 | 0.6650 | 0.6782 | 0.6560 | | 0.8028 | 4.7127 | 650 | 0.7635 | 0.6923 | 0.6832 | 0.6923 | 0.6803 | | 0.7874 | 5.0727 | 700 | 0.7815 | 0.6709 | 0.6828 | 0.6709 | 0.6754 | | 0.7861 | 5.4364 | 750 | 0.7629 | 0.6873 | 0.6811 | 0.6873 | 0.6820 | | 0.7593 | 5.8 | 800 | 0.7794 | 0.6823 | 0.6744 | 0.6823 | 0.6684 | | 0.753 | 6.16 | 850 | 0.7680 | 0.6845 | 0.6859 | 0.6845 | 0.6838 | | 0.753 | 6.5236 | 900 | 0.8404 | 0.6395 | 0.6783 | 0.6395 | 0.6459 | ### Framework versions - Transformers 4.51.1 - Pytorch 2.6.0+cu124 - Datasets 3.5.0 - Tokenizers 0.21.1