--- library_name: transformers license: apache-2.0 language: - ja base_model: - Qwen/Qwen2.5-32B-Instruct pipeline_tag: text-generation --- ## ABEJA-Qwen2.5-32b-Japanese-v0.1 ABEJA-Qwen2.5-32b-Japanese-v0.1はQwen/Qwen2.5-32B-Instructをベースに日本語中心とした継続事前学習を実施したモデルです。 Post-Traningはまだ実施しておらず、ChatVector(Qwen/Qwen2.5-32B-InstructとQwen/Qwen2.5-32B の差分ベクトル)により指示追従性能をあげています。 詳細はABEJAのテックブログを参照してください。 ## 使い方 ```Python import torch from transformers import AutoModelForCausalLM, AutoTokenizer model_name = "abeja/ABEJA-Qwen2.5-32b-Japanese-v0.1" model = AutoModelForCausalLM.from_pretrained( model_name, torch_dtype="auto", device_map="auto" ) tokenizer = AutoTokenizer.from_pretrained(model_name) prompt = "人とAIが協調するためには?" messages = [ {"role": "system", "content": "You are Qwen, created by Alibaba Cloud. You are a helpful assistant."}, {"role": "user", "content": prompt} ] text = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) model_inputs = tokenizer([text], return_tensors="pt").to(model.device) generated_ids = model.generate( **model_inputs, max_new_tokens=512 ) generated_ids = [ output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids) ] response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0] print(response) ``` ## 開発者 - Hiroshi Kiyota - Keisuke Fujimoto - Kentaro Nakanishi - Kyo Hattori - Shinya Otani - Shogo Muranushi - Takuma Kume - Tomoki Manabe (*)アルファベット順