Upload 3 files
Browse files- app.py +83 -0
- requirements.txt +6 -0
- smma5_dataset_500_plus.jsonl +0 -0
app.py
ADDED
@@ -0,0 +1,83 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import json
|
3 |
+
import numpy as np
|
4 |
+
import requests
|
5 |
+
from sentence_transformers import SentenceTransformer
|
6 |
+
from sklearn.metrics.pairwise import cosine_similarity
|
7 |
+
|
8 |
+
# Load dataset
|
9 |
+
@st.cache_resource
|
10 |
+
def load_data():
|
11 |
+
with open("smma5_dataset_500_plus.jsonl", "r", encoding="utf-8") as f:
|
12 |
+
return [json.loads(line) for line in f]
|
13 |
+
|
14 |
+
@st.cache_resource
|
15 |
+
def load_model():
|
16 |
+
return SentenceTransformer("sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2")
|
17 |
+
|
18 |
+
def embed_dataset(data, model):
|
19 |
+
texts = [d["instruction"] for d in data]
|
20 |
+
return model.encode(texts, convert_to_tensor=False)
|
21 |
+
|
22 |
+
def find_best_match(query, data, model, embeddings):
|
23 |
+
query_embedding = model.encode([query])
|
24 |
+
scores = cosine_similarity(query_embedding, embeddings)[0]
|
25 |
+
top_idx = int(np.argmax(scores))
|
26 |
+
return data[top_idx], scores[top_idx]
|
27 |
+
|
28 |
+
def generate_with_qwen(prompt, hf_token):
|
29 |
+
API_URL = "https://api-inference.huggingface.co/models/Qwen/Qwen1.5-0.5B"
|
30 |
+
headers = {"Authorization": f"Bearer {hf_token}"}
|
31 |
+
payload = {"inputs": prompt, "parameters": {"max_new_tokens": 300}}
|
32 |
+
|
33 |
+
try:
|
34 |
+
response = requests.post(API_URL, headers=headers, json=payload, timeout=60)
|
35 |
+
response.raise_for_status()
|
36 |
+
result = response.json()
|
37 |
+
if isinstance(result, list):
|
38 |
+
return result[0]["generated_text"][len(prompt):].strip()
|
39 |
+
else:
|
40 |
+
return "⚠️ Unexpected response format."
|
41 |
+
except Exception as e:
|
42 |
+
return f"❌ Error contacting Qwen model: {str(e)}"
|
43 |
+
|
44 |
+
# UI setup
|
45 |
+
st.set_page_config(page_title="SMMA 5.0 Chatbot + Qwen", layout="centered")
|
46 |
+
st.title("💬 SMMA 5.0 – Enhanced by Qwen")
|
47 |
+
st.markdown("اسأل أي سؤال عن التسويق، واحصل على إجابة مدعّمة من قاعدة بياناتك الخاصة ومُحسّنة بواسطة نموذج Qwen.")
|
48 |
+
|
49 |
+
hf_token = st.text_input("🔐 أدخل توكن Hugging Face الخاص بك:", type="password")
|
50 |
+
|
51 |
+
user_input = st.text_input("اكتب سؤالك هنا:")
|
52 |
+
|
53 |
+
if user_input and hf_token:
|
54 |
+
data = load_data()
|
55 |
+
model = load_model()
|
56 |
+
embeddings = embed_dataset(data, model)
|
57 |
+
result, score = find_best_match(user_input, data, model, embeddings)
|
58 |
+
|
59 |
+
# Display base response
|
60 |
+
st.markdown("### 📌 الرد من قاعدة البيانات")
|
61 |
+
st.write(result["response"])
|
62 |
+
|
63 |
+
# Format prompt
|
64 |
+
prompt = f"""أنت خبير تسويق سوشيال ميديا محترف. المستخدم سأل:
|
65 |
+
"{user_input}"
|
66 |
+
|
67 |
+
وهذه إجابة من قاعدة بياناتك:
|
68 |
+
"{result['response']}"
|
69 |
+
|
70 |
+
من فضلك قدّم إجابة محسّنة وقوية باللغة العربية للفيسبوك أو إنستجرام أو تيك توك.
|
71 |
+
"""
|
72 |
+
|
73 |
+
st.markdown("### 🤖 الرد المحسن من Qwen")
|
74 |
+
with st.spinner("يتم توليد الرد المحسن..."):
|
75 |
+
enhanced = generate_with_qwen(prompt, hf_token)
|
76 |
+
st.write(enhanced)
|
77 |
+
|
78 |
+
# Extra info
|
79 |
+
with st.expander("📊 تفاصيل إضافية"):
|
80 |
+
st.write("🧠 استراتيجية البوست:", result["format_strategy"])
|
81 |
+
st.write("📝 نوع البوست:", result["post_type"])
|
82 |
+
st.write("🪄 الكابشن:", result["caption_strategy"])
|
83 |
+
st.write("✍️ تقنية الكتابة:", result["copywriting_technique"])
|
requirements.txt
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
streamlit
|
2 |
+
sentence-transformers
|
3 |
+
scikit-learn
|
4 |
+
numpy
|
5 |
+
|
6 |
+
requests
|
smma5_dataset_500_plus.jsonl
ADDED
The diff for this file is too large to render.
See raw diff
|
|