--- library_name: transformers license: apache-2.0 base_model: openai/whisper-medium tags: - generated_from_trainer metrics: - wer model-index: - name: whisper-medium-ml-exp2 results: [] --- # whisper-medium-ml-exp2 This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2220 - Wer: 57.6922 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 15000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:-----:|:---------------:|:-------:| | 0.3119 | 0.0333 | 500 | 0.4193 | 79.0917 | | 0.0405 | 0.0667 | 1000 | 0.4335 | 73.5830 | | 0.0355 | 0.1 | 1500 | 0.4332 | 77.2785 | | 0.126 | 0.1333 | 2000 | 0.1967 | 58.4021 | | 0.0519 | 0.1667 | 2500 | 0.1861 | 58.5671 | | 0.0439 | 0.2 | 3000 | 0.1942 | 57.4274 | | 0.0534 | 1.0112 | 3500 | 0.1936 | 61.1497 | | 0.0214 | 1.0445 | 4000 | 0.2253 | 59.7816 | | 0.0129 | 1.0779 | 4500 | 0.2630 | 61.0614 | | 0.048 | 1.1112 | 5000 | 0.1780 | 56.3606 | | 0.047 | 1.1445 | 5500 | 0.1638 | 52.9951 | | 0.0325 | 1.1779 | 6000 | 0.1683 | 54.5512 | | 0.0293 | 1.2112 | 6500 | 0.1689 | 57.2451 | | 0.028 | 2.0224 | 7000 | 0.2145 | 56.5237 | | 0.009 | 2.0557 | 7500 | 0.2227 | 56.3068 | | 0.0076 | 2.0891 | 8000 | 0.2750 | 66.0540 | | 0.0385 | 2.1224 | 8500 | 0.2178 | 54.4514 | | 0.0245 | 2.1557 | 9000 | 0.1721 | 52.0031 | | 0.0226 | 2.1891 | 9500 | 0.1741 | 53.7511 | | 0.0212 | 3.0003 | 10000 | 0.2001 | 56.1495 | | 0.0121 | 3.0336 | 10500 | 0.2322 | 55.4722 | | 0.0042 | 3.0669 | 11000 | 0.2403 | 57.6864 | | 0.0059 | 3.1003 | 11500 | 0.2953 | 64.0067 | | 0.0248 | 3.1336 | 12000 | 0.1744 | 51.3412 | | 0.0172 | 3.1669 | 12500 | 0.1872 | 53.5324 | | 0.015 | 3.2003 | 13000 | 0.1930 | 54.7028 | | 0.0158 | 4.0115 | 13500 | 0.2173 | 60.9636 | | 0.0028 | 4.0448 | 14000 | 0.2330 | 53.4921 | | 0.0028 | 4.0781 | 14500 | 0.2415 | 53.4767 | | 0.0194 | 4.1115 | 15000 | 0.2220 | 57.6922 | ### Framework versions - Transformers 4.51.1 - Pytorch 2.6.0+cu124 - Datasets 3.5.0 - Tokenizers 0.21.1