--- library_name: transformers license: cc-by-nc-sa-4.0 base_model: microsoft/layoutlmv3-base tags: - generated_from_trainer datasets: - funsd metrics: - precision - recall - f1 - accuracy model-index: - name: layoutlmv3-finetuned-funsd results: - task: name: Token Classification type: token-classification dataset: name: funsd type: funsd config: funsd split: test args: funsd metrics: - name: Precision type: precision value: 0.7822618488972314 - name: Recall type: recall value: 0.8281172379533035 - name: F1 type: f1 value: 0.8045366795366795 - name: Accuracy type: accuracy value: 0.8135029121597528 --- # layoutlmv3-finetuned-funsd This model is a fine-tuned version of [microsoft/layoutlmv3-base](https://huggingface.co/microsoft/layoutlmv3-base) on the funsd dataset. It achieves the following results on the evaluation set: - Loss: 1.1059 - Precision: 0.7823 - Recall: 0.8281 - F1: 0.8045 - Accuracy: 0.8135 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - training_steps: 1000 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 10.0 | 100 | 0.7158 | 0.6964 | 0.7690 | 0.7309 | 0.7833 | | No log | 20.0 | 200 | 0.7508 | 0.7420 | 0.8058 | 0.7726 | 0.8076 | | No log | 30.0 | 300 | 0.8085 | 0.7678 | 0.8097 | 0.7882 | 0.8078 | | No log | 40.0 | 400 | 0.9083 | 0.7689 | 0.8147 | 0.7911 | 0.8061 | | 0.3419 | 50.0 | 500 | 0.9294 | 0.7840 | 0.8296 | 0.8062 | 0.8128 | | 0.3419 | 60.0 | 600 | 1.0036 | 0.7807 | 0.8366 | 0.8077 | 0.8178 | | 0.3419 | 70.0 | 700 | 1.0983 | 0.7727 | 0.8241 | 0.7976 | 0.8044 | | 0.3419 | 80.0 | 800 | 1.1092 | 0.7921 | 0.8251 | 0.8083 | 0.8064 | | 0.3419 | 90.0 | 900 | 1.1010 | 0.7780 | 0.8306 | 0.8035 | 0.8133 | | 0.0261 | 100.0 | 1000 | 1.1059 | 0.7823 | 0.8281 | 0.8045 | 0.8135 | ### Framework versions - Transformers 4.51.3 - Pytorch 2.6.0+cu124 - Datasets 3.5.0 - Tokenizers 0.21.1