Upload yi-34b-aezakmi-sft-1-hf.py
Browse files- yi-34b-aezakmi-sft-1-hf.py +163 -0
yi-34b-aezakmi-sft-1-hf.py
ADDED
@@ -0,0 +1,163 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from unsloth import FastLanguageModel
|
2 |
+
from datasets import Dataset, load_dataset
|
3 |
+
from dataclasses import dataclass, field
|
4 |
+
from typing import Dict, Optional
|
5 |
+
import torch
|
6 |
+
max_seq_length = 4096 # Choose any! We auto support RoPE Scaling internally!
|
7 |
+
dtype = None # None for auto detection. Float16 for Tesla T4, V100, Bfloat16 for Ampere+
|
8 |
+
load_in_4bit = True # Use 4bit quantization to reduce memory usage. Can be False.
|
9 |
+
|
10 |
+
model, tokenizer = FastLanguageModel.from_pretrained(
|
11 |
+
model_name = "/run/.../yi-34b-rawrr-dpo-2-unsloth", # Choose ANY! eg mistralai/Mistral-7B-Instruct-v0.2
|
12 |
+
max_seq_length = max_seq_length,
|
13 |
+
attn_implementation="flash_attention_2",
|
14 |
+
dtype = dtype,
|
15 |
+
load_in_4bit = load_in_4bit,
|
16 |
+
# token = "hf_...", # use one if using gated models like meta-llama/Llama-2-7b-hf
|
17 |
+
)
|
18 |
+
|
19 |
+
|
20 |
+
|
21 |
+
#@title Alignment Handbook utils
|
22 |
+
import os
|
23 |
+
import re
|
24 |
+
from typing import List, Literal, Optional
|
25 |
+
|
26 |
+
from datasets import DatasetDict, concatenate_datasets, load_dataset, load_from_disk
|
27 |
+
from datasets.builder import DatasetGenerationError
|
28 |
+
|
29 |
+
|
30 |
+
#DEFAULT_CHAT_TEMPLATE = "{% for message in messages %}\n{% if message['role'] == 'user' %}\n{{ '<|user|>\n' + message['content'] + eos_token }}\n{% elif message['role'] == 'system' %}\n{{ '<|system|>\n' + message['content'] + eos_token }}\n{% elif message['role'] == 'assistant' %}\n{{ '<|assistant|>\n' + message['content'] + eos_token }}\n{% endif %}\n{% if loop.last and add_generation_prompt %}\n{{ '<|assistant|>' }}\n{% endif %}\n{% endfor %}"
|
31 |
+
tokenizer.chat_template = "{% if not add_generation_prompt is defined %}{% set add_generation_prompt = false %}{% endif %}{% for message in messages %}{{'<|im_start|>' + message['role'] + '\n' + message['content'] + '<|im_end|>' + '\n'}}{% endfor %}{% if add_generation_prompt %}{{ '<|im_start|>assistant\n' }}{% endif %}"
|
32 |
+
|
33 |
+
def chatml_format(example):
|
34 |
+
# Format system
|
35 |
+
if len(example['system']) > 0:
|
36 |
+
message = {"role": "system", "content": example['system']}
|
37 |
+
system = tokenizer.apply_chat_template([message], tokenize=False)
|
38 |
+
else:
|
39 |
+
system = ""
|
40 |
+
|
41 |
+
# Format instruction
|
42 |
+
message = {"role": "user", "content": example['instruction']}
|
43 |
+
prompt = tokenizer.apply_chat_template([message], tokenize=False, add_generation_prompt=True)
|
44 |
+
|
45 |
+
# Format response
|
46 |
+
response = example['response'] + "<|im_end|>\n"
|
47 |
+
|
48 |
+
|
49 |
+
return {
|
50 |
+
"text": system + prompt + response,
|
51 |
+
}
|
52 |
+
|
53 |
+
# Load dataset
|
54 |
+
#dataset = load_dataset("adamo1139/AEZAKMI_v2", split="train")
|
55 |
+
dataset = load_dataset("json", data_files="/run/..../datasets/aezakmi_v2/aezakmi_v2.jsonl", split="train")
|
56 |
+
|
57 |
+
|
58 |
+
import pprint
|
59 |
+
pprint.pprint("""NOT a formatted dataset""")
|
60 |
+
pprint
|
61 |
+
pprint.pprint(dataset[25])
|
62 |
+
pprint.pprint(dataset[26])
|
63 |
+
pprint.pprint(dataset[27])
|
64 |
+
pprint.pprint(dataset[28])
|
65 |
+
pprint.pprint(dataset[29])
|
66 |
+
# Save columns
|
67 |
+
original_columns = dataset.column_names
|
68 |
+
|
69 |
+
# Format dataset
|
70 |
+
dataset = dataset.map(
|
71 |
+
chatml_format,
|
72 |
+
remove_columns=original_columns
|
73 |
+
)
|
74 |
+
|
75 |
+
# Print sample
|
76 |
+
pprint.pprint("""formatted dataset""")
|
77 |
+
pprint.pprint(dataset[25])
|
78 |
+
pprint.pprint(dataset[26])
|
79 |
+
pprint.pprint(dataset[27])
|
80 |
+
pprint.pprint(dataset[28])
|
81 |
+
pprint.pprint(dataset[29])
|
82 |
+
|
83 |
+
|
84 |
+
model = FastLanguageModel.get_peft_model(
|
85 |
+
model,
|
86 |
+
r = 16, # Choose any number > 0 ! Suggested 8, 16, 32, 64, 128
|
87 |
+
target_modules = ["q_proj", "k_proj", "v_proj", "o_proj",
|
88 |
+
"gate_proj", "up_proj", "down_proj",],
|
89 |
+
lora_alpha = 32,
|
90 |
+
lora_dropout = 0, # Currently only supports dropout = 0
|
91 |
+
bias = "none", # Currently only supports bias = "none"
|
92 |
+
use_gradient_checkpointing = True,
|
93 |
+
random_state = 3407,
|
94 |
+
use_rslora = False, # We support rank stabilized LoRA
|
95 |
+
loftq_config = None, # And LoftQ
|
96 |
+
)
|
97 |
+
|
98 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig, HfArgumentParser, TrainingArguments
|
99 |
+
from transformers.utils import logging
|
100 |
+
from trl import SFTTrainer
|
101 |
+
|
102 |
+
sft_trainer = SFTTrainer(
|
103 |
+
model = model,
|
104 |
+
tokenizer = tokenizer,
|
105 |
+
train_dataset = dataset,
|
106 |
+
dataset_text_field = "text",
|
107 |
+
max_seq_length = 2200,
|
108 |
+
packing=True,
|
109 |
+
args = TrainingArguments(
|
110 |
+
evaluation_strategy = "no",
|
111 |
+
per_device_train_batch_size = 1,
|
112 |
+
gradient_accumulation_steps = 1,
|
113 |
+
num_train_epochs = 1.4,
|
114 |
+
warmup_steps = 100,
|
115 |
+
learning_rate = 0.00006,
|
116 |
+
fp16 = not torch.cuda.is_bf16_supported(),
|
117 |
+
bf16 = torch.cuda.is_bf16_supported(),
|
118 |
+
logging_steps = 1,
|
119 |
+
output_dir = "outputs3",
|
120 |
+
optim = "adamw_8bit",
|
121 |
+
weight_decay = 0.0,
|
122 |
+
lr_scheduler_type = "cosine",
|
123 |
+
lr_scheduler_kwargs = {
|
124 |
+
"num_cycles" : 0.3,
|
125 |
+
},
|
126 |
+
seed = 42,
|
127 |
+
save_strategy = "steps",
|
128 |
+
save_steps = 1000,
|
129 |
+
save_total_limit = 10,
|
130 |
+
),
|
131 |
+
)
|
132 |
+
|
133 |
+
'''
|
134 |
+
dpo_trainer = DPOTrainer(
|
135 |
+
model = model,
|
136 |
+
ref_model = None,
|
137 |
+
args = TrainingArguments(
|
138 |
+
per_device_train_batch_size = 1,
|
139 |
+
gradient_accumulation_steps = 16,
|
140 |
+
warmup_ratio = 0.05,
|
141 |
+
num_train_epochs = 1,
|
142 |
+
learning_rate = 5e-5,
|
143 |
+
fp16 = not torch.cuda.is_bf16_supported(),
|
144 |
+
bf16 = torch.cuda.is_bf16_supported(),
|
145 |
+
logging_steps = 1,
|
146 |
+
optim = "adamw_8bit",
|
147 |
+
weight_decay = 0.0,
|
148 |
+
lr_scheduler_type = "linear",
|
149 |
+
seed = 42,
|
150 |
+
output_dir = "outputs2",
|
151 |
+
),
|
152 |
+
beta = 0.1,
|
153 |
+
train_dataset = dataset,
|
154 |
+
# eval_dataset = raw_datasets["test"],
|
155 |
+
tokenizer = tokenizer,
|
156 |
+
max_length = 500,
|
157 |
+
max_prompt_length = 500,
|
158 |
+
)
|
159 |
+
'''
|
160 |
+
|
161 |
+
|
162 |
+
sft_trainer.train()
|
163 |
+
model.save_pretrained("yi-34b-200k-aezakmi-raw-unsloth-2") # Local saving
|