Aditeya Baral
commited on
Add new CrossEncoder model
Browse files- README.md +123 -123
- model.safetensors +1 -1
README.md
CHANGED
|
@@ -38,25 +38,25 @@ model-index:
|
|
| 38 |
type: val
|
| 39 |
metrics:
|
| 40 |
- type: accuracy
|
| 41 |
-
value: 0.
|
| 42 |
name: Accuracy
|
| 43 |
- type: accuracy_threshold
|
| 44 |
-
value: 0.
|
| 45 |
name: Accuracy Threshold
|
| 46 |
- type: f1
|
| 47 |
-
value: 0.
|
| 48 |
name: F1
|
| 49 |
- type: f1_threshold
|
| 50 |
-
value: 0.
|
| 51 |
name: F1 Threshold
|
| 52 |
- type: precision
|
| 53 |
-
value: 0.
|
| 54 |
name: Precision
|
| 55 |
- type: recall
|
| 56 |
-
value: 0.
|
| 57 |
name: Recall
|
| 58 |
- type: average_precision
|
| 59 |
-
value: 0.
|
| 60 |
name: Average Precision
|
| 61 |
- task:
|
| 62 |
type: cross-encoder-classification
|
|
@@ -188,13 +188,13 @@ You can finetune this model on your own dataset.
|
|
| 188 |
|
| 189 |
| Metric | val | test |
|
| 190 |
|:----------------------|:-----------|:-----------|
|
| 191 |
-
| accuracy | 0.
|
| 192 |
-
| accuracy_threshold | 0.
|
| 193 |
-
| f1 | 0.
|
| 194 |
-
| f1_threshold | 0.
|
| 195 |
-
| precision | 0.
|
| 196 |
-
| recall | 0.
|
| 197 |
-
| **average_precision** | **0.
|
| 198 |
|
| 199 |
<!--
|
| 200 |
## Bias, Risks and Limitations
|
|
@@ -325,7 +325,7 @@ You can finetune this model on your own dataset.
|
|
| 325 |
- `bf16_full_eval`: False
|
| 326 |
- `fp16_full_eval`: False
|
| 327 |
- `tf32`: None
|
| 328 |
-
- `local_rank`:
|
| 329 |
- `ddp_backend`: None
|
| 330 |
- `tpu_num_cores`: None
|
| 331 |
- `tpu_metrics_debug`: False
|
|
@@ -406,115 +406,115 @@ You can finetune this model on your own dataset.
|
|
| 406 |
| Epoch | Step | Training Loss | Validation Loss | val_average_precision | test_average_precision |
|
| 407 |
|:----------:|:--------:|:-------------:|:---------------:|:---------------------:|:----------------------:|
|
| 408 |
| -1 | -1 | - | - | 0.7676 | 0.6907 |
|
| 409 |
-
| 0.1833 | 1000 | 0.3563 | 0.4805 | 0.
|
| 410 |
-
| 0.3666
|
| 411 |
-
| 0.5499 | 3000 | 0.1983 | 0.5019 | 0.
|
| 412 |
-
|
|
| 413 |
-
| 0.9164 | 5000 | 0.1886 | 0.4726 | 0.
|
| 414 |
-
| 1.0997 | 6000 | 0.183 | 0.5062 | 0.
|
| 415 |
-
| 1.2830 | 7000 | 0.1838 | 0.5152 | 0.
|
| 416 |
-
| 1.4663 | 8000 | 0.1858 | 0.5105 | 0.
|
| 417 |
-
| 1.6496 | 9000 | 0.1905 | 0.5052 | 0.
|
| 418 |
-
| 1.8328 | 10000 | 0.1926 | 0.5316 | 0.
|
| 419 |
-
| 2.0161 | 11000 | 0.1951 | 0.5340 | 0.
|
| 420 |
-
| 2.1994 | 12000 | 0.1853 | 0.5573 | 0.
|
| 421 |
-
| 2.3827 | 13000 | 0.1848 | 0.5530 | 0.
|
| 422 |
-
| 2.5660 | 14000 | 0.1813 | 0.5754 | 0.
|
| 423 |
-
| 2.7493 | 15000 | 0.1793 | 0.5316 | 0.
|
| 424 |
-
| 2.9326 | 16000 | 0.1778 | 0.5230 | 0.
|
| 425 |
-
| 3.1158 | 17000 | 0.1681 | 0.5246 | 0.
|
| 426 |
-
| 3.2991 | 18000 | 0.1662 | 0.4946 | 0.
|
| 427 |
-
| 3.4824 | 19000 | 0.1648 | 0.5262 | 0.
|
| 428 |
-
| 3.6657 | 20000 | 0.1649 | 0.5007 | 0.
|
| 429 |
-
| 3.8490 | 21000 | 0.1633 | 0.5368 | 0.
|
| 430 |
-
| 4.0323 | 22000 | 0.1602 | 0.5559 | 0.
|
| 431 |
-
| 4.2155 | 23000 | 0.149 | 0.5796 | 0.
|
| 432 |
-
| 4.3988 | 24000 | 0.1486 | 0.5322 | 0.
|
| 433 |
-
| 4.5821 | 25000 | 0.1495 | 0.5142 | 0.
|
| 434 |
| 4.7654 | 26000 | 0.1493 | 0.5203 | 0.7866 | - |
|
| 435 |
-
| 4.9487 | 27000 | 0.1498 | 0.5433 | 0.
|
| 436 |
-
| 5.1320 | 28000 | 0.1391 | 0.5589 | 0.
|
| 437 |
-
| 5.3152 | 29000 | 0.1346 | 0.5267 | 0.
|
| 438 |
-
| 5.4985 | 30000 | 0.1367 | 0.5657 | 0.
|
| 439 |
-
| 5.6818 | 31000 | 0.1358 | 0.5631 | 0.
|
| 440 |
-
| 5.8651 | 32000 | 0.136 | 0.5444 | 0.
|
| 441 |
-
| 6.0484 | 33000 | 0.1346 | 0.5605 | 0.
|
| 442 |
-
| 6.2317 | 34000 | 0.1222 | 0.5399 | 0.
|
| 443 |
-
| 6.4150 | 35000 | 0.1241 | 0.5272 | 0.
|
| 444 |
-
| 6.5982 | 36000 | 0.1243 | 0.6096 | 0.
|
| 445 |
-
| 6.7815 | 37000 | 0.1266 | 0.5661 | 0.
|
| 446 |
-
| 6.9648 | 38000 | 0.1246 | 0.5341 | 0.
|
| 447 |
-
| 7.1481 | 39000 | 0.1128 | 0.6223 | 0.
|
| 448 |
-
| 7.3314 | 40000 | 0.1124 | 0.5485 | 0.
|
| 449 |
-
| 7.5147 | 41000 | 0.1127 | 0.5375 | 0.
|
| 450 |
-
| 7.6979 | 42000 | 0.1122 | 0.5231 | 0.
|
| 451 |
-
| 7.8812 | 43000 | 0.1141 | 0.5608 | 0.
|
| 452 |
-
| 8.0645 | 44000 | 0.1088 | 0.6511 | 0.
|
| 453 |
-
| 8.2478 | 45000 | 0.0998 | 0.6217 | 0.
|
| 454 |
-
| 8.4311 | 46000 | 0.1017 | 0.6000 | 0.
|
| 455 |
-
| 8.6144 | 47000 | 0.1031 | 0.5469 | 0.
|
| 456 |
-
| 8.7977 | 48000 | 0.1012 | 0.5862 | 0.
|
| 457 |
-
| 8.9809 | 49000 | 0.1031 | 0.5527 | 0.
|
| 458 |
-
| 9.1642 | 50000 | 0.0921 | 0.5460 | 0.
|
| 459 |
-
| 9.3475 | 51000 | 0.0909 | 0.5820 | 0.
|
| 460 |
-
| 9.5308 | 52000 | 0.0919 | 0.5589 | 0.
|
| 461 |
-
| 9.7141 | 53000 | 0.0939 | 0.5521 | 0.
|
| 462 |
-
| 9.8974 | 54000 | 0.0925 | 0.6942 | 0.
|
| 463 |
-
| 10.0806 | 55000 | 0.0863 | 0.6208 | 0.
|
| 464 |
-
| 10.2639 | 56000 | 0.0803 | 0.6632 | 0.
|
| 465 |
-
| 10.4472 | 57000 | 0.0797 | 0.6583 | 0.
|
| 466 |
-
| 10.6305 | 58000 | 0.0824 | 0.6194 | 0.
|
| 467 |
-
| 10.8138 | 59000 | 0.0829 | 0.6136 | 0.
|
| 468 |
-
| 10.9971 | 60000 | 0.0819 | 0.5833 | 0.
|
| 469 |
-
| 11.1804 | 61000 | 0.0693 | 0.6491 | 0.
|
| 470 |
-
| 11.3636 | 62000 | 0.0709 | 0.6449 | 0.
|
| 471 |
-
| 11.5469 | 63000 | 0.0721 | 0.6158 | 0.
|
| 472 |
-
| 11.7302 | 64000 | 0.0721 | 0.6649 | 0.
|
| 473 |
-
| 11.9135 | 65000 | 0.0732 | 0.6403 | 0.
|
| 474 |
-
| 12.0968 | 66000 | 0.0679 | 0.6079 | 0.
|
| 475 |
-
| 12.2801 | 67000 | 0.0615 | 0.6862 | 0.
|
| 476 |
-
| 12.4633 | 68000 | 0.0629 | 0.7239 | 0.
|
| 477 |
-
| 12.6466 | 69000 | 0.0643 | 0.6419 | 0.
|
| 478 |
-
| 12.8299 | 70000 | 0.0635 | 0.6743 | 0.
|
| 479 |
-
| 13.0132 | 71000 | 0.064 | 0.7135 | 0.
|
| 480 |
-
| 13.1965 | 72000 | 0.0545 | 0.6643 | 0.
|
| 481 |
-
| 13.3798 | 73000 | 0.0548 | 0.6508 | 0.
|
| 482 |
-
| 13.5630 | 74000 | 0.0547 | 0.7003 | 0.
|
| 483 |
-
| 13.7463 | 75000 | 0.0548 | 0.7170 | 0.
|
| 484 |
-
| 13.9296 | 76000 | 0.0553 | 0.6917 | 0.
|
| 485 |
-
| 14.1129 | 77000 | 0.0508 | 0.7000 | 0.
|
| 486 |
-
| 14.2962 | 78000 | 0.0474 | 0.7336 | 0.
|
| 487 |
-
| 14.4795 | 79000 | 0.0465 | 0.7122 | 0.
|
| 488 |
-
| 14.6628 | 80000 | 0.0478 | 0.7321 | 0.
|
| 489 |
-
| 14.8460 | 81000 | 0.0468 | 0.7112 | 0.
|
| 490 |
-
| 15.0293 | 82000 | 0.0465 | 0.7534 | 0.
|
| 491 |
-
| 15.2126 | 83000 | 0.0395 | 0.7238 | 0.
|
| 492 |
-
| 15.3959 | 84000 | 0.0401 | 0.7686 | 0.
|
| 493 |
-
| 15.5792 | 85000 | 0.0408 | 0.7296 | 0.
|
| 494 |
-
| 15.7625 | 86000 | 0.0414 | 0.7533 | 0.
|
| 495 |
-
| 15.9457 | 87000 | 0.0402 | 0.7748 | 0.
|
| 496 |
-
| 16.1290 | 88000 | 0.0352 | 0.8267 | 0.
|
| 497 |
-
| 16.3123 | 89000 | 0.0354 | 0.7488 | 0.
|
| 498 |
-
| 16.4956 | 90000 | 0.0337 | 0.7850 | 0.
|
| 499 |
-
| 16.6789 | 91000 | 0.0333 | 0.7812 | 0.
|
| 500 |
-
| 16.8622 | 92000 | 0.0341 | 0.8184 | 0.
|
| 501 |
-
| 17.0455 | 93000 | 0.0333 | 0.8166 | 0.
|
| 502 |
-
| 17.2287 | 94000 | 0.0288 | 0.7980 | 0.
|
| 503 |
-
| 17.4120 | 95000 | 0.0282 | 0.8195 | 0.
|
| 504 |
-
| 17.5953 | 96000 | 0.0285 | 0.7864 | 0.
|
| 505 |
-
| 17.7786 | 97000 | 0.0284 | 0.8000 | 0.
|
| 506 |
-
| 17.9619 | 98000 | 0.0279 | 0.8118 | 0.
|
| 507 |
-
| 18.1452 | 99000 | 0.0245 | 0.8727 | 0.
|
| 508 |
-
| 18.3284 | 100000 | 0.0235 | 0.8695 | 0.
|
| 509 |
-
| 18.5117 | 101000 | 0.0236 | 0.8246 | 0.
|
| 510 |
-
| 18.6950 | 102000 | 0.0232 | 0.8543 | 0.
|
| 511 |
-
| 18.8783 | 103000 | 0.0234 | 0.8840 | 0.
|
| 512 |
-
| 19.0616 | 104000 | 0.0219 | 0.8804 | 0.
|
| 513 |
-
| 19.2449 | 105000 | 0.0201 | 0.8885 | 0.
|
| 514 |
-
| 19.4282 | 106000 | 0.0194 | 0.8901 | 0.
|
| 515 |
-
| 19.6114 | 107000 | 0.0197 | 0.8850 | 0.
|
| 516 |
-
| 19.7947 | 108000 | 0.0196 | 0.8835 | 0.
|
| 517 |
-
| 19.9780 | 109000 | 0.0197 | 0.8803 | 0.
|
| 518 |
|
| 519 |
* The bold row denotes the saved checkpoint.
|
| 520 |
</details>
|
|
|
|
| 38 |
type: val
|
| 39 |
metrics:
|
| 40 |
- type: accuracy
|
| 41 |
+
value: 0.773111243307555
|
| 42 |
name: Accuracy
|
| 43 |
- type: accuracy_threshold
|
| 44 |
+
value: 0.7637044787406921
|
| 45 |
name: Accuracy Threshold
|
| 46 |
- type: f1
|
| 47 |
+
value: 0.6950724637681159
|
| 48 |
name: F1
|
| 49 |
- type: f1_threshold
|
| 50 |
+
value: 0.04638597369194031
|
| 51 |
name: F1 Threshold
|
| 52 |
- type: precision
|
| 53 |
+
value: 0.6454912516823688
|
| 54 |
name: Precision
|
| 55 |
- type: recall
|
| 56 |
+
value: 0.7529042386185243
|
| 57 |
name: Recall
|
| 58 |
- type: average_precision
|
| 59 |
+
value: 0.7833280130154174
|
| 60 |
name: Average Precision
|
| 61 |
- task:
|
| 62 |
type: cross-encoder-classification
|
|
|
|
| 188 |
|
| 189 |
| Metric | val | test |
|
| 190 |
|:----------------------|:-----------|:-----------|
|
| 191 |
+
| accuracy | 0.7731 | 0.723 |
|
| 192 |
+
| accuracy_threshold | 0.7637 | 0.9352 |
|
| 193 |
+
| f1 | 0.6951 | 0.7144 |
|
| 194 |
+
| f1_threshold | 0.0464 | 0.9143 |
|
| 195 |
+
| precision | 0.6455 | 0.6303 |
|
| 196 |
+
| recall | 0.7529 | 0.8245 |
|
| 197 |
+
| **average_precision** | **0.7833** | **0.6907** |
|
| 198 |
|
| 199 |
<!--
|
| 200 |
## Bias, Risks and Limitations
|
|
|
|
| 325 |
- `bf16_full_eval`: False
|
| 326 |
- `fp16_full_eval`: False
|
| 327 |
- `tf32`: None
|
| 328 |
+
- `local_rank`: 0
|
| 329 |
- `ddp_backend`: None
|
| 330 |
- `tpu_num_cores`: None
|
| 331 |
- `tpu_metrics_debug`: False
|
|
|
|
| 406 |
| Epoch | Step | Training Loss | Validation Loss | val_average_precision | test_average_precision |
|
| 407 |
|:----------:|:--------:|:-------------:|:---------------:|:---------------------:|:----------------------:|
|
| 408 |
| -1 | -1 | - | - | 0.7676 | 0.6907 |
|
| 409 |
+
| 0.1833 | 1000 | 0.3563 | 0.4805 | 0.7831 | - |
|
| 410 |
+
| **0.3666** | **2000** | **0.2065** | **0.5394** | **0.8221** | **-** |
|
| 411 |
+
| 0.5499 | 3000 | 0.1983 | 0.5019 | 0.8178 | - |
|
| 412 |
+
| 0.7331 | 4000 | 0.1923 | 0.5109 | 0.7960 | - |
|
| 413 |
+
| 0.9164 | 5000 | 0.1886 | 0.4726 | 0.8058 | - |
|
| 414 |
+
| 1.0997 | 6000 | 0.183 | 0.5062 | 0.8032 | - |
|
| 415 |
+
| 1.2830 | 7000 | 0.1838 | 0.5152 | 0.8021 | - |
|
| 416 |
+
| 1.4663 | 8000 | 0.1858 | 0.5105 | 0.7926 | - |
|
| 417 |
+
| 1.6496 | 9000 | 0.1905 | 0.5052 | 0.7859 | - |
|
| 418 |
+
| 1.8328 | 10000 | 0.1926 | 0.5316 | 0.7895 | - |
|
| 419 |
+
| 2.0161 | 11000 | 0.1951 | 0.5340 | 0.7681 | - |
|
| 420 |
+
| 2.1994 | 12000 | 0.1853 | 0.5573 | 0.7577 | - |
|
| 421 |
+
| 2.3827 | 13000 | 0.1848 | 0.5530 | 0.7946 | - |
|
| 422 |
+
| 2.5660 | 14000 | 0.1813 | 0.5754 | 0.7655 | - |
|
| 423 |
+
| 2.7493 | 15000 | 0.1793 | 0.5316 | 0.7514 | - |
|
| 424 |
+
| 2.9326 | 16000 | 0.1778 | 0.5230 | 0.7868 | - |
|
| 425 |
+
| 3.1158 | 17000 | 0.1681 | 0.5246 | 0.7816 | - |
|
| 426 |
+
| 3.2991 | 18000 | 0.1662 | 0.4946 | 0.7732 | - |
|
| 427 |
+
| 3.4824 | 19000 | 0.1648 | 0.5262 | 0.7853 | - |
|
| 428 |
+
| 3.6657 | 20000 | 0.1649 | 0.5007 | 0.7871 | - |
|
| 429 |
+
| 3.8490 | 21000 | 0.1633 | 0.5368 | 0.7807 | - |
|
| 430 |
+
| 4.0323 | 22000 | 0.1602 | 0.5559 | 0.7769 | - |
|
| 431 |
+
| 4.2155 | 23000 | 0.149 | 0.5796 | 0.7697 | - |
|
| 432 |
+
| 4.3988 | 24000 | 0.1486 | 0.5322 | 0.7608 | - |
|
| 433 |
+
| 4.5821 | 25000 | 0.1495 | 0.5142 | 0.7713 | - |
|
| 434 |
| 4.7654 | 26000 | 0.1493 | 0.5203 | 0.7866 | - |
|
| 435 |
+
| 4.9487 | 27000 | 0.1498 | 0.5433 | 0.7738 | - |
|
| 436 |
+
| 5.1320 | 28000 | 0.1391 | 0.5589 | 0.7803 | - |
|
| 437 |
+
| 5.3152 | 29000 | 0.1346 | 0.5267 | 0.7713 | - |
|
| 438 |
+
| 5.4985 | 30000 | 0.1367 | 0.5657 | 0.7803 | - |
|
| 439 |
+
| 5.6818 | 31000 | 0.1358 | 0.5631 | 0.7646 | - |
|
| 440 |
+
| 5.8651 | 32000 | 0.136 | 0.5444 | 0.7753 | - |
|
| 441 |
+
| 6.0484 | 33000 | 0.1346 | 0.5605 | 0.7703 | - |
|
| 442 |
+
| 6.2317 | 34000 | 0.1222 | 0.5399 | 0.7776 | - |
|
| 443 |
+
| 6.4150 | 35000 | 0.1241 | 0.5272 | 0.7899 | - |
|
| 444 |
+
| 6.5982 | 36000 | 0.1243 | 0.6096 | 0.7723 | - |
|
| 445 |
+
| 6.7815 | 37000 | 0.1266 | 0.5661 | 0.7609 | - |
|
| 446 |
+
| 6.9648 | 38000 | 0.1246 | 0.5341 | 0.7889 | - |
|
| 447 |
+
| 7.1481 | 39000 | 0.1128 | 0.6223 | 0.7884 | - |
|
| 448 |
+
| 7.3314 | 40000 | 0.1124 | 0.5485 | 0.7743 | - |
|
| 449 |
+
| 7.5147 | 41000 | 0.1127 | 0.5375 | 0.7842 | - |
|
| 450 |
+
| 7.6979 | 42000 | 0.1122 | 0.5231 | 0.7939 | - |
|
| 451 |
+
| 7.8812 | 43000 | 0.1141 | 0.5608 | 0.7705 | - |
|
| 452 |
+
| 8.0645 | 44000 | 0.1088 | 0.6511 | 0.7813 | - |
|
| 453 |
+
| 8.2478 | 45000 | 0.0998 | 0.6217 | 0.7648 | - |
|
| 454 |
+
| 8.4311 | 46000 | 0.1017 | 0.6000 | 0.7822 | - |
|
| 455 |
+
| 8.6144 | 47000 | 0.1031 | 0.5469 | 0.7866 | - |
|
| 456 |
+
| 8.7977 | 48000 | 0.1012 | 0.5862 | 0.7790 | - |
|
| 457 |
+
| 8.9809 | 49000 | 0.1031 | 0.5527 | 0.7876 | - |
|
| 458 |
+
| 9.1642 | 50000 | 0.0921 | 0.5460 | 0.7788 | - |
|
| 459 |
+
| 9.3475 | 51000 | 0.0909 | 0.5820 | 0.7815 | - |
|
| 460 |
+
| 9.5308 | 52000 | 0.0919 | 0.5589 | 0.7841 | - |
|
| 461 |
+
| 9.7141 | 53000 | 0.0939 | 0.5521 | 0.7821 | - |
|
| 462 |
+
| 9.8974 | 54000 | 0.0925 | 0.6942 | 0.7797 | - |
|
| 463 |
+
| 10.0806 | 55000 | 0.0863 | 0.6208 | 0.7729 | - |
|
| 464 |
+
| 10.2639 | 56000 | 0.0803 | 0.6632 | 0.7911 | - |
|
| 465 |
+
| 10.4472 | 57000 | 0.0797 | 0.6583 | 0.7833 | - |
|
| 466 |
+
| 10.6305 | 58000 | 0.0824 | 0.6194 | 0.7862 | - |
|
| 467 |
+
| 10.8138 | 59000 | 0.0829 | 0.6136 | 0.7783 | - |
|
| 468 |
+
| 10.9971 | 60000 | 0.0819 | 0.5833 | 0.7727 | - |
|
| 469 |
+
| 11.1804 | 61000 | 0.0693 | 0.6491 | 0.7881 | - |
|
| 470 |
+
| 11.3636 | 62000 | 0.0709 | 0.6449 | 0.7784 | - |
|
| 471 |
+
| 11.5469 | 63000 | 0.0721 | 0.6158 | 0.7838 | - |
|
| 472 |
+
| 11.7302 | 64000 | 0.0721 | 0.6649 | 0.7841 | - |
|
| 473 |
+
| 11.9135 | 65000 | 0.0732 | 0.6403 | 0.7702 | - |
|
| 474 |
+
| 12.0968 | 66000 | 0.0679 | 0.6079 | 0.7817 | - |
|
| 475 |
+
| 12.2801 | 67000 | 0.0615 | 0.6862 | 0.7787 | - |
|
| 476 |
+
| 12.4633 | 68000 | 0.0629 | 0.7239 | 0.7824 | - |
|
| 477 |
+
| 12.6466 | 69000 | 0.0643 | 0.6419 | 0.7897 | - |
|
| 478 |
+
| 12.8299 | 70000 | 0.0635 | 0.6743 | 0.7762 | - |
|
| 479 |
+
| 13.0132 | 71000 | 0.064 | 0.7135 | 0.7741 | - |
|
| 480 |
+
| 13.1965 | 72000 | 0.0545 | 0.6643 | 0.7723 | - |
|
| 481 |
+
| 13.3798 | 73000 | 0.0548 | 0.6508 | 0.7758 | - |
|
| 482 |
+
| 13.5630 | 74000 | 0.0547 | 0.7003 | 0.7785 | - |
|
| 483 |
+
| 13.7463 | 75000 | 0.0548 | 0.7170 | 0.7846 | - |
|
| 484 |
+
| 13.9296 | 76000 | 0.0553 | 0.6917 | 0.7722 | - |
|
| 485 |
+
| 14.1129 | 77000 | 0.0508 | 0.7000 | 0.7767 | - |
|
| 486 |
+
| 14.2962 | 78000 | 0.0474 | 0.7336 | 0.7730 | - |
|
| 487 |
+
| 14.4795 | 79000 | 0.0465 | 0.7122 | 0.7795 | - |
|
| 488 |
+
| 14.6628 | 80000 | 0.0478 | 0.7321 | 0.7779 | - |
|
| 489 |
+
| 14.8460 | 81000 | 0.0468 | 0.7112 | 0.7796 | - |
|
| 490 |
+
| 15.0293 | 82000 | 0.0465 | 0.7534 | 0.7788 | - |
|
| 491 |
+
| 15.2126 | 83000 | 0.0395 | 0.7238 | 0.7808 | - |
|
| 492 |
+
| 15.3959 | 84000 | 0.0401 | 0.7686 | 0.7905 | - |
|
| 493 |
+
| 15.5792 | 85000 | 0.0408 | 0.7296 | 0.7900 | - |
|
| 494 |
+
| 15.7625 | 86000 | 0.0414 | 0.7533 | 0.7822 | - |
|
| 495 |
+
| 15.9457 | 87000 | 0.0402 | 0.7748 | 0.7867 | - |
|
| 496 |
+
| 16.1290 | 88000 | 0.0352 | 0.8267 | 0.7844 | - |
|
| 497 |
+
| 16.3123 | 89000 | 0.0354 | 0.7488 | 0.7912 | - |
|
| 498 |
+
| 16.4956 | 90000 | 0.0337 | 0.7850 | 0.7857 | - |
|
| 499 |
+
| 16.6789 | 91000 | 0.0333 | 0.7812 | 0.7815 | - |
|
| 500 |
+
| 16.8622 | 92000 | 0.0341 | 0.8184 | 0.7786 | - |
|
| 501 |
+
| 17.0455 | 93000 | 0.0333 | 0.8166 | 0.7781 | - |
|
| 502 |
+
| 17.2287 | 94000 | 0.0288 | 0.7980 | 0.7803 | - |
|
| 503 |
+
| 17.4120 | 95000 | 0.0282 | 0.8195 | 0.7774 | - |
|
| 504 |
+
| 17.5953 | 96000 | 0.0285 | 0.7864 | 0.7829 | - |
|
| 505 |
+
| 17.7786 | 97000 | 0.0284 | 0.8000 | 0.7838 | - |
|
| 506 |
+
| 17.9619 | 98000 | 0.0279 | 0.8118 | 0.7873 | - |
|
| 507 |
+
| 18.1452 | 99000 | 0.0245 | 0.8727 | 0.7866 | - |
|
| 508 |
+
| 18.3284 | 100000 | 0.0235 | 0.8695 | 0.7836 | - |
|
| 509 |
+
| 18.5117 | 101000 | 0.0236 | 0.8246 | 0.7820 | - |
|
| 510 |
+
| 18.6950 | 102000 | 0.0232 | 0.8543 | 0.7828 | - |
|
| 511 |
+
| 18.8783 | 103000 | 0.0234 | 0.8840 | 0.7793 | - |
|
| 512 |
+
| 19.0616 | 104000 | 0.0219 | 0.8804 | 0.7783 | - |
|
| 513 |
+
| 19.2449 | 105000 | 0.0201 | 0.8885 | 0.7812 | - |
|
| 514 |
+
| 19.4282 | 106000 | 0.0194 | 0.8901 | 0.7821 | - |
|
| 515 |
+
| 19.6114 | 107000 | 0.0197 | 0.8850 | 0.7824 | - |
|
| 516 |
+
| 19.7947 | 108000 | 0.0196 | 0.8835 | 0.7830 | - |
|
| 517 |
+
| 19.9780 | 109000 | 0.0197 | 0.8803 | 0.7833 | - |
|
| 518 |
|
| 519 |
* The bold row denotes the saved checkpoint.
|
| 520 |
</details>
|
model.safetensors
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
size 598436708
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:7d65eb4f0fbd06c437d40d0d2d5339e297be505ac8c82405dd88710d83e0abe0
|
| 3 |
size 598436708
|